Hardware aware matrix-free approach for accelerating FE discretized eigenvalue problems: Application to large-scale Kohn-Sham density functional theory

Gourab Panigrahi

Doctoral Advisor: Dr. Phani Motamarri

Department of Computational and Data Sciences (CDS) Indian Institute of Science (IISc) Bangalore

Partial Differential Equations (PDE)

PDEs commonly encountered in Navier-Stokes, Quantum modeling of materials (DFT, DFPT), Electrostatics, Modal analysis, etc

Partial Differential Equations :

 $\mathcal{F}u = f$

- \mathcal{F} : PDE operator
 - $-\nabla^2 \rightarrow$ Poisson Equation
 - $-\nabla^2 + \kappa \rightarrow$ Helmholtz Equation
 - $-\nabla^2 + V(x) \rightarrow$ Quantum Mechanics
- u : Scalar Field
- f : Forcing function

Finite-element (FE) Discretization:

- $\mathbf{A}\mathbf{u} = \mathbf{f} \qquad \mathbf{A}: N_{\text{DoF}} \times N_{\text{DoF}} \quad \mathbf{f}: N_{\text{DoF}}$
- ♦ N_{DoF} → No of grid points/degrees of freedom (~10⁶ 10⁹)
- ♦ Compact support of FE polynomial basis \rightarrow A is sparse (~99%)
- ✤ Large-scale sparse matrix problems: Iterative solvers are employed

Iterative Solvers

$$u \longrightarrow Black Box \longrightarrow Au$$

Computationally dominant step

Sparse matrix multi-vector products (AU)

$$\mathcal{F}u^{i}(\mathbf{x}) = \begin{cases} f^{i}(\mathbf{x}) \\ \lambda^{i}u^{i}(\mathbf{x}) \end{cases} \quad \forall \mathbf{x} \in \Omega \text{ such that} \qquad u^{i}(\mathbf{x}) = u_{D}(\mathbf{x}) \qquad \forall \mathbf{x} \in \partial\Omega_{D} \\ u^{i}(\mathbf{x}) \approx u^{i,h}(\mathbf{x}) = \sum_{J} u^{i}_{J}N_{J}(\mathbf{x}) \\ \mathbf{A}\mathbf{U} = \begin{cases} \mathbf{F} \\ \mathbf{M}\mathbf{U}\mathbf{\Lambda} \end{cases} \quad \text{such that} \qquad U_{ki} = u_{D}(\mathbf{x}_{k}) \qquad \forall \mathbf{x}_{k} \in \partial\Omega_{D} \\ \text{where multi-vectors } \mathbf{U} = \begin{bmatrix} \mathbf{u}^{1} \ \mathbf{u}^{2} \ \dots \ \mathbf{u}^{n_{v}} \end{bmatrix} \text{ and } \mathbf{F} = \begin{bmatrix} f^{1} \ f^{2} \ \dots \ f^{n_{v}} \end{bmatrix} \quad \mathbf{\Lambda} = \text{Diagonal Matrix of Eigenvalues} \\ \text{Kohn-Sham Equation (Density Functional Theory) :} \end{cases}$$

$$\left(-\frac{1}{2}\nabla^2 + V_{\text{eff}}[\rho, \boldsymbol{R}]\right)\psi_i = \epsilon_i\psi_i, \quad \rho = \sum_i |\psi_i|^2, \quad i = 1, 2, \dots N$$

✤ Challenging PDE : Non-linear Eigenvalue Problem and $N \sim 1 - 10^5$ eigenvalues/eigenvectors pairs depending on number of electrons

*

^[1] J. Sun, A. Zhou, Finite Element Methods for Eigenvalue Problems, Chapman and Hall/CRC, 2016.

^[2] K. Ghosh, H. Ma, V. Gavini, G. Galli, All-electron density functional calculations for electron and nuclear spin interactions in molecules and solids, Physical Review Materials 3 (2019)

^[3] S. Markidis, The Old and the New : Can Physics-Informed Deep-Learning Replace Traditional Linear Solvers?, Frontiers in Big Data 4 (2021)

Sparse matrix-vector products (Au)

□ Global sparse-matrix Approach [1] → Global Sparse Matrix is assembled and multiplied with global vector. (Uses Sparse Matrix modules in popular FEM libraries like PETSc) (Efficient for FE polynomial degrees 1 and 2)

Cell-matrix Approach [2, 3] :

- FE cell-level matrix construction
- FE cell-level vector extraction
- FE cell-level matrix vector product
- Assembly of cell-level product vectors

□ Advantages of cell-matrix over sparse matrix

- Local dense matrix-vector product at cell-level
- Amenable to thread parallelism on CPUs/GPUs

Demerits of cell-matrix approach

- Storage and data access cost of cell-matrix (every cell)
- Storage of cell-level vectors (u and v)

[1] C.D. Cantwell, S.J. Sherwin, R.M. Kirby, P.H.J. Kelly, From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements, Computers & Fluids 43 (2011) 23–28

[2] G. F. Carey, E. Barragy, R. McLay, M. Sharma, Element-by-element vector and parallel computations, Communications in Applied Numerical Methods 4 (1988) 299–307.

[3] S. Das, P. Motamarri, V. Subramanian, D. M. Rogers, V. Gavini, DFT- FE 1.0: A massively parallel hybrid CPU-GPU density functional theory code using finite-element discretization, Computer Physics Communications 280 (2022) 108473.

Strategies to compute sparse matrix multi-vector products (AU)

Blocked Iterative Solvers : CG, GMRES, MINRES (Linear System of Equations)
 : Arnoldi, Davidson, Chebyshev Filtered Subspace Iteration (ChFSI) (Eigenvalue Problems)

- $\Box Computationally dominant step \rightarrow AU$
- □ Cell-matrix approach is shown to be computationally efficient with good throughput performance than sparse matrix approach for evaluating **AU**

[10] S. Das, P. Motamarri, V. Subramanian, D. M. Rogers, V. Gavini, DFT- FE 1.0: A massively parallel hybrid CPU-GPU density functional theory code using finite-element discretization, Computer Physics Communications 280 (2022) 108473.

Matrix-free approach for matrix-vector products

- □ On-the-fly matrix-vector products without storing the cell-level dense matrices → reduce both <u>arithmetic complexity</u> and <u>memory footprint</u> [4 6].
- □ Matrix-free approaches, exploit the tensor-structured nature of the finite-element basis functions $N_I(\mathbf{x})$ and recast the 3D integrals involved in the matrix-vector products as a sequence of tensor contractions.

 q_{v}

 q_z

$$\boldsymbol{v} = [\mathbf{M}]\{\boldsymbol{u}\} \rightarrow \boldsymbol{v}_{I} = \sum_{J} M_{IJ} \boldsymbol{u}_{J} = \int_{\Omega} N_{I}(\mathbf{x}) N_{J}(\mathbf{x}) \boldsymbol{u}_{J} d\mathbf{x}$$

$$= \int_{\hat{\Omega}} \hat{N}_{I}^{3D}(\boldsymbol{\xi}) \hat{N}_{J}^{3D}(\boldsymbol{\xi}) \boldsymbol{u}_{J} det(\mathbf{J}) d\boldsymbol{\xi} = \int_{\hat{\Omega}} \hat{N}_{i_{x}}(\xi_{1}) \hat{N}_{i_{y}}(\xi_{2}) \hat{N}_{i_{z}}(\xi_{3}) \hat{N}_{j_{x}}(\xi_{1}) \hat{N}_{j_{y}}(\xi_{2}) \hat{N}_{j_{z}}(\xi_{3}) \boldsymbol{u}_{j_{x}j_{y}j_{z}} det(\mathbf{J}) d\boldsymbol{\xi}_{1} d\boldsymbol{\xi}_{2} d\boldsymbol{\xi}_{3}$$

$$Matrix \, free \, Algorithm$$

$$O(n_{p}^{4}), \, n_{p} = \text{No of grid points in each direction}$$

$$v_{I} = v_{i_{x}i_{y}i_{z}} = \sum w_{q_{z}} \cdot \hat{N}_{i_{z}}(\xi_{q_{z}}) \sum w_{q_{y}} \cdot \hat{N}_{i_{y}}(\xi_{q_{y}}) \sum w_{q_{x}} \cdot \hat{N}_{i_{x}}(\xi_{q_{x}}) \left| J_{q_{x}q_{y}q_{z}} \right| \sum \hat{N}_{j_{z}}(\xi_{q_{z}}) \sum \hat{N}_{j_{y}}(\xi_{q_{x}}) u_{j_{x}j_{y}j_{z}}$$

2a. Interpolation

(X-dir)

jz

Step 3: Assembly

2e. Integration

(Y-dir)

Step 1: Extraction

2b. Interpolation

(Y-dir)

jν

Step 2: Tensor Contraction

2c. Point product

jχ

2d. Integration

(X-dir)

[4] K. Ljungkvist, Matrix-Free Finite-Element Computations on Graphics Processors with Adaptively Refined Unstructured Meshes, in: Proceedings of the 25th High Performance Computing Symposium, HPC '17, Society for Computer Simulation International, San Diego, CA, USA, 2017, pp. 1–12.

[5] M. Kronbichler, K. Kormann, A generic interface for parallel cell-based finite element operator application, Computers & Fluids 63 (2012) 135–147.

 q_x

[6] D. Davydov, J. Pelteret, D. Arndt, M. Kronbichler, P. Steinmann, A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid, International Journal for Numerical Methods in Engineering 121 (2020) 2874–2895.

Strategies to compute sparse matrix multi-vector products (AU)

□ Cell-matrix → Dense matrix-matrix multiplications, High arithmetic intensity, just a Strided Batched GEMM call by vendor optimized library, trivially extendable from single vector case

Can we use Matrix-Free methods for multi-vector products?

□ Matrix-Free → Sequence of small matrix multiplications, Low arithmetic intensity, non-trivial for multi-vectors.

□ Current open-source implementations of matrix-free methods → Not directly applicable for the action of a FE discretized operator (A) on a large number of FE discretized fields (U).

Goal : Develop efficient matrix-free implementation for evaluating matrix multi-vector products AU

Multi-vector products involving Helmholtz-like operator (AU)

 \Box Consider a model problem with the Helmholtz-like operator \mathcal{F}

$$\mathcal{F}u^{i}(\mathbf{x}) = -\mu \nabla^{2} u^{i}(\mathbf{x}) + \kappa(\mathbf{x}) u^{i}(\mathbf{x}) = \begin{cases} f^{i}(\mathbf{x}) \\ \lambda^{i} u^{i}(\mathbf{x}) \end{cases} \quad \forall \mathbf{x} \in \Omega \quad \text{such that} \quad u^{i}(\mathbf{x}) = u_{D}(\mathbf{x}) \quad \forall \mathbf{x} \in \partial \Omega_{D} \\ u^{i}(\mathbf{x}) \approx u^{i,h}(\mathbf{x}) = \sum_{J}^{m} u^{i}_{J} N_{J}(\mathbf{x}) \\ \mathbf{A}\mathbf{U} = \mathbf{K}\mathbf{U} + \mathbf{M}_{\kappa}\mathbf{U} = \begin{cases} \mathbf{F} \\ \mathbf{M}\mathbf{U}\mathbf{\Lambda} \end{cases} \quad \text{such that} \quad U_{ki} = u_{D}(\mathbf{x}_{k}) \quad \forall \mathbf{x}_{k} \in \partial \Omega_{D} \\ \text{where multi-vectors } \mathbf{U} = \begin{bmatrix} u^{1} \ u^{2} \ \dots \ u^{n_{\nu}} \end{bmatrix} \text{ and } \mathbf{F} = \begin{bmatrix} f^{1} \ f^{2} \ \dots \ f^{n_{\nu}} \end{bmatrix} \quad \mathbf{\Lambda} = \text{Diagonal Matrix of Eigenvalues} \\ K_{IJ} = \int_{\Omega} \mu \nabla N_{I}(\mathbf{x}) \cdot \nabla N_{J}(\mathbf{x}) \ d\mathbf{x} \qquad M_{IJ} = \int_{\Omega} N_{I}(\mathbf{x}) N_{J}(\mathbf{x}) \ d\mathbf{x} \qquad M^{\kappa}_{IJ} = \int_{\Omega} \kappa(\mathbf{x}) N_{I}(\mathbf{x}) N_{J}(\mathbf{x}) \ d\mathbf{x} \end{cases}$$

Proposed Matrix-Free Algorithm for AU

$$\mathbf{V} = \sum_{t}^{n_{t}} \mathbf{P}^{(t)T} \mathbf{C}^{(t)T} \left(\sum_{i_{b}}^{n_{b}} \sum_{e}^{E_{t}} \mathbf{B}^{(i_{b},t)T} \mathbf{Q}^{(i_{b},e,t)T} \mathbf{A}^{(e)} \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \right) \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$$

- $\mathbf{P}^{(t)}$: Subdomain level extraction
- $\mathbf{C}^{(t)}$: Constraints
- $\mathbf{Q}^{(i_b,e,t)}$: FE cell-level extraction
- $\mathbf{B}^{(i_b,t)}$: Batch extraction

 $\mathbf{Q}^{(i_b,e,t)^T}$: FE cell-level assembly $\mathbf{B}^{(i_b,t)^T}$

 $A^{(e)}$: FE cell-level matrix

- : Batch assembly
- $\mathbf{C}^{(t)T}$: Constraints
- $\mathbf{P}^{(t)T}$: Subdomain level assembly

Matrix-free Algorithm for AU

$$\mathbf{V} = \sum_{l}^{n_{t}} \mathbf{P}^{(l)T} \mathbf{C}^{(l)T} \left(\sum_{i_{b}}^{n_{b}} \sum_{e}^{E_{t}} \mathbf{B}^{(i_{b},t)T} \mathbf{Q}^{(i_{b},e,t)T} \mathbf{A}^{(e)} \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \right) \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$$

$$\mathbf{A} = \mathbf{K} + \mathbf{M}_{\kappa} \rightarrow \mathbf{A}^{(e)} = \mathbf{K}^{(e)} + \mathbf{M}_{\kappa}^{(e)}$$

$$K_{IJ}^{(e)} = \int_{\Omega^{(e)}} \mu \nabla N_{I} \cdot \nabla N_{J} d\mathbf{x}$$

$$= \int_{\hat{\Omega}} \mu \left(\mathbf{J}^{(e)^{-T}} \nabla_{\xi} \hat{N}_{I} \right) \cdot \left(\mathbf{J}^{(e)^{-T}} \nabla_{\xi} \hat{N}_{J} \right) \det \mathbf{J}^{(e)} d\hat{\mathbf{x}}$$

$$= \int_{\hat{\Omega}} \kappa(\hat{\mathbf{x}}) \hat{N}_{I} \hat{N}_{J} det \mathbf{J}^{(e)} d\hat{\mathbf{x}}$$

$$= \sum_{Q=1}^{n_{q}^{3}} \left(\nabla_{\xi} \hat{N}_{I} \right)^{T} \mathbf{J}^{(e)^{-T}} \left(\nabla_{\xi} \hat{N}_{J} \right) \mu w_{Q} \det \mathbf{J}^{(e)} \Big|_{\hat{\xi}_{Q}}$$

$$= \sum_{Q=1}^{n_{q}^{3}} \kappa \hat{N}_{I} \hat{N}_{J} w_{Q} det \mathbf{J}^{(e)} \Big|_{\hat{\xi}_{Q}}$$

 $\mathbf{J}^{(e)} \to \mathbf{Jacobian\ matrix\ of\ the\ map\ from\ } \Omega^{(e)}$ to $\widehat{\Omega}$ (reference cell) $\hat{\boldsymbol{\xi}}_Q \to \mathbf{Q}$ uadrature points in $\widehat{\Omega}$ $n_q \to \mathbf{No\ of\ quadrature\ points\ in\ each\ direction}$

Matrix-free Algorithm for AU

$$\mathbf{V} = \sum_{t}^{n_{t}} \mathbf{P}^{(t)T} \mathbf{C}^{(t)T} \left(\sum_{i_{b}}^{n_{b}} \sum_{e}^{E_{t}} \mathbf{B}^{(i_{b},t)T} \mathbf{Q}^{(i_{b},e,t)T} \mathbf{A}^{(e)} \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \right) \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$$

$$D_{QI}^{(s)} = \nabla_{\boldsymbol{\xi}} \widehat{N}_{I} \left(\widehat{\boldsymbol{\xi}}_{Q} \right) \cdot \widehat{\boldsymbol{n}}_{s}$$

$$N_{QI} = \widehat{N}_I(\widehat{\boldsymbol{\xi}}_Q)$$

$$\mathcal{G}_{QQ}^{(s,d)} = \left[\left(\mathbf{J}^{(e)} \right)^{-1} \left(\mathbf{J}^{(e)} \right)^{-T} \right]_{sd} \det \mathbf{J}^{(e)} \mu w_Q \Big|_{\widehat{\boldsymbol{\xi}}_Q}$$

$$\mathcal{G}_{QQ} = \kappa \det \mathbf{J}^{(e)} w_Q \Big|_{\widehat{\boldsymbol{\xi}}_Q}$$

	$\left[\mathbf{D}^{(0)} ight]^{T}$	$\int [{m G}^{(0,0)}]$	$oldsymbol{\mathcal{G}}^{(0,1)}$	$\boldsymbol{\mathcal{G}}^{(0,2)}$]	$[\mathbf{D}^{(0)}]$
$\mathbf{K}^{(e)} =$	$\mathbf{D}^{(1)}$	$oldsymbol{\mathcal{G}}^{(1,0)}$	$oldsymbol{\mathcal{G}}^{(1,1)}$	$\boldsymbol{\mathcal{G}}^{(1,2)}$	$\mathbf{D}^{(1)}$
	$\mathbf{D}^{(2)}$	${oldsymbol{\mathcal{G}}^{(2,0)}}$	${oldsymbol{\mathcal{G}}}^{(2,1)}$	$\boldsymbol{\mathcal{G}}^{(2,2)}$	$\left[\mathbf{D}^{(2)}\right]$

$\mathbf{M}_{\kappa}^{(e)}$	=	$\mathbf{N}^T \boldsymbol{\mathcal{G}} \mathbf{N}$

Matrix-free Algorithm for AU

$$\mathbf{V} = \sum_{t}^{n_{t}} \mathbf{P}^{(t)T} \mathbf{C}^{(t)T} \left(\sum_{i_{b}}^{n_{b}} \sum_{e}^{E_{t}} \mathbf{B}^{(i_{b},t)T} \mathbf{Q}^{(i_{b},e,t)T} \mathbf{A}^{(e)} \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \right) \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$$

 $\mathbf{U}^{(i_b,e,t)} = \mathbf{Q}^{(i_b,e,t)} \mathbf{B}^{(i_b,t)} \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$

$$\mathbf{D}^{(s)} = \widetilde{\mathbf{D}}^{(s)} \mathbf{N} \qquad \qquad \widetilde{D}_{\widehat{q}q}^{(s)} = \left. \frac{\partial \widetilde{N}_q(\boldsymbol{\xi})}{\partial \xi_s} \right|_{\boldsymbol{\xi}_{\widehat{q}}} \qquad \qquad \widehat{N}_i(\boldsymbol{\xi}) = \sum_{\widehat{q}} \widehat{N}_i(\boldsymbol{\xi}_{\widehat{q}}) \widetilde{N}_{\widehat{q}}(\boldsymbol{\xi})$$

Summary of key steps in matrix-free Algorithm for AU

Evaluation of AU in matrix-free

$$\mathbf{V} = \sum_{t}^{n_{t}} \mathbf{P}^{(t)^{T}} \mathbf{C}^{(t)^{T}} \left(\sum_{i_{b}}^{n_{b}} \sum_{e}^{E_{t}} \mathbf{B}^{(i_{b},t)^{T}} \mathbf{Q}^{(i_{b},e,t)^{T}} \mathbf{A}^{(e)} \right)$$

$$\mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$$

$$\mathbf{X}^{(t)} = \mathbf{C}^{(t)} \mathbf{P}^{(t)} \mathbf{U}$$

$$\mathbf{Extraction} - \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \mathbf{X}^{(t)}$$

$$\mathbf{FE-cell Evaluation} - \mathbf{A}^{(e)} \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \mathbf{X}^{(t)}$$

$$\mathbf{Assembly} - \mathbf{B}^{(i_{b},t)^{T}} \mathbf{Q}^{(i_{b},e,t)^{T}} \mathbf{A}^{(e)} \mathbf{Q}^{(i_{b},e,t)} \mathbf{B}^{(i_{b},t)} \mathbf{X}^{(t)}$$

 $n_q =$ Quadrature points in each direction $\square N^{1D}$ and \widetilde{D}^{1D} are $n_q \times n_p$ and $n_q \times n_q$ respectively \square Computational complexity \longrightarrow $O((4(n_p^3 n_q + n_p^2 n_q^2 + n_p n_q^3) + 12n_q^4 + 3n_q^3)En_v)$

 \Box For $n_p = n_q$, Computational complexity = $O(En_v n_p^4)$

- □ Reduction of $O(n_p^2)$ computational complexity over cell-matrix approach $O(En_v n_p^6)$
- □ Memory footprint $\longrightarrow O(n_p^2)$ for Matrix-Free while cell-matrix has $O(En_p^6 + En_v n_p^3)$

Numerical implementation aspects on GPUs

Data Layout: Storage of U

Figure: Pictorial depiction of the CV and BCV layouts. Here $u_J^{\beta} = u^{\beta}(\mathbf{x}_J)$ with β representing the vector index and *J* representing the dof index.

Batched Contiguous Vector (BCV) Layout :

- Improved data locality
- Batches amenable to parallelism
- Batchsize tailored to hardware architectures

Evaluation of AU : First Tensor Contraction

Figure: Pictorial depiction of tensor contractions done on GPUs. The extraction and first tensor contraction steps of evaluation of $\mathbf{A}^{(e)}\mathbf{U}^{(i_b,e,t)}$ are depicted for the case of $n_p = 4$ and $n_q = 8$. Each block in **U** represents n_p^2 sized array of *b* doubles.

Key Ideas in Proposed Matrix-Free Implementation

- □ Fuse all the tensor contractions in a single kernel and use shared memory to store the data.
- □ Fuse the extraction and assembly steps in a single kernel to minimize data movements.
- \Box Store N and \tilde{D} in constant memory to take advantage of broadcast and better utilize the GPU pipelines.
- □ Combine the extraction step and first tensor contraction and perform tensor contractions as linear combinations of columns of N and $\tilde{\mathbf{D}}$. Thus, the floating-point operations can be started as soon as a portion of U is read from the device memory, without needing to wait for its complete bn_p^3 data inside shared memory.
- Use registers to store the local sum for each thread, which reduces bank conflicts and better utilizes the hardware.
- □ Like extraction, assembly and last tensor contraction are also combined to directly add to output V on device memory.

System Configuration

		Library	GPU Benchmarks						
System		Compiler	gcc 9.1.0 nvcc 11.0						
Config	Summit Supercomputer	Compiler Flags	-03 -arch=sm_70 -lcublas						
Processor	IBM [®] POWER9	MPI	IBM Spectrum MPI 10.4						
GPU	NVIDIA [®] Tesla [®] V100 SXM2 16GB	BLAS	cuBLAS 11.0						
Nodes	4608								
CPU cores/Node	32	Table: Exter	nal libraries and compiler flags used for compilation.						
GPUs/Node	6	1metrics+="							
Node Performance	42 TFLOP/s (V100 FP64)	<pre>2 smsass_thread_inst_executed_op_dadd_pred_or</pre>							
Memory/Node	512 GB DDR4 + 96 GB HBM2	sum,\							
Interconnect	Mellanox [®] EDR 100G InfiniBand	4 smsass_thread_inst_executed_op_dmul_pred_on.							
OS	RHEL 8.2	5 6ncumetri	metrics \$metricsprofile-from-start offtarget-processes all \$EXECUTABLE						
Table: Syster	n configurations for the benchmark architectures	offt							

Table: System configurations for the benchmark architectures.

Wrapper script for profiling with NVIDIA Nsight Compute 2021.2 for multi-node GPUs

GPU Benchmarks – deal.ii, MFEM and Cell-Matrix

- MFEM-libCEED → DOE Exascale Computing Project for Matrix-Free
- deal.ii \rightarrow Popular FEM library with Matrix-free support
- Cell-Matrix Method → DFT-FE library (Extended defects in metallic alloys calculation) (ACM Gordon Bell Prize 2023) (660 PFLOPS on Frontier)

GPU Benchmarks – deal.ii, MFEM and Cell-Matrix (V100 and A100 GPUs)

Figure: Comparison of our single-vector matrix-free implementation against deal.II's matrix-free method and the cell-matrix method on a NVIDIA[®] Tesla[®] V100 SXM2 16GB (Summit Supercomputer). Case studies: 117649 DoFs (FEOrder=6 and 8); 125000 DoFs (FEOrder=7).

Figure: Comparison of our multivector matrix-free implementation against libCEED matrix-free method and the cell-matrix method on 8 NVIDIA® A100-SXM4-80GB GPUs (Selene Supercomputer). Case studies: 1092727 DoFs (FEOrder=6); 1191016 DoFs (FEOrder=7); 1157625 DoFs (FEOrder=8)

Benchmarks – Peak Performance and Scaling Efficiency (AU)

	0 5						10 15						2	20 25			5	30						
	FEOrder=6									FEOrder=7						FEOrder=8								
96	4.96	9.43	13.54	16.45	17.65	19.02	19.11	19.18	5.22	10.22	16.81	21.00	26.23	29.70	29.66	29.68	5.77	10.86	17.49	23.91	28.39	31.51	31.45	31.44
	(5%)	(7%)	(8%)	(9%)	(9%)	(9%)	(10%)	(10%)	(5%)	(7%)	(10%)	(12%)	(14%)	(15%)	(15%)	(15%)	(5%)	(7%)	(10%)	(12%)	(13%)	(14%)	(14%)	(14%)
SUP2	5.00	7.23	8.69	9.99	10.27	10.59	10.48	10.53	5.45	9.22	14.28	18.79	19.73	21.65	21.68	21.65	5.55	9.99	14.04	18.04	19.03	19.64	19.48	19.57
	(10%)	(11%)	(11%)	(11%)	(11%)	(11%)	(10%)	(11%)	(11%)	(13%)	(18%)	(21%)	(21%)	(22%)	(22%)	(22%)	(10%)	(13%)	(16%)	(19%)	(18%)	(18%)	(18%)	(18%)
of of 0	3.86	6.24	7.14	7.78	8.48	8.81	8.81	8.82	5.58	9.18	12.21	14.04	15.30	15.80	15.80	15.79	4.46	8.51	11.90	13.95	14.54	16.21	16.11	16.31
	(15%)	(19%)	(18%)	(17%)	(18%)	(18%)	(18%)	(18%)	(22%)	(27%)	(30%)	(32%)	(32%)	(32%)	(32%)	(32%)	(16%)	(23%)	(27%)	(29%)	(27%)	(29%)	(29%)	(29%)
qun ₁₂	4.78	6.08	6.81	7.34	8.05	7.86	7.87	7.87	5.92	8.07	9.50	11.56	11.28	12.45	12.44	12.44	5.89	8.30	9.77	11.42	11.80	12.58	12.58	12.60
	(38%)	(36%)	(34%)	(33%)	(34%)	(31%)	(31%)	(31%)	(46%)	(47%)	(47%)	(52%)	(48%)	(50%)	(50%)	(50%)	(43%)	(45%)	(44%)	(47%)	(44%)	(45%)	(46%)	(45%)
6	6.29	8.39	9.97	11.22	12.01	12.52	12.51	12.52	6.38	8.55	10.02	11.14	11.79	12.46	12.45	12.46	6.83	9.29	11.03	12.08	13.37	13.87	13.77	13.86
	(100%))(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)
8 16 32 64 128 256 512 1024									8 16 32 64 128 256 512 1024					8 16 32 64 128 256 512 1024										
Number of Vectors									Number of Vectors					Number of Vectors										

Figure: Scaling study of our matrix-free implementation on 6 to 96 V100 GPUs employing the number of vectors $n_v = 8$, 16, 32, 64, 128, 256, 512, 1024. For a large number of vectors (512-1024), our implementation results in parallel scaling efficiencies of ~30-50% for 12 GPUs (~90k DoFs/GPU) and ~10-15% for 96 GPUs (~12k DoFs/GPU). Case studies: 1092727 DoFs (FEOrder=6); 1191016 DoFs (FEOrder=7); 1157625 DoFs (FEOrder=8).

 $> \sim 30\%$ of peak performance of 1 Summit node

GPU Benchmarks – Roofline

FEOrder 6 : 2.0x FEOrder 7 : 2.0x FEOrder 8 : 2.8x

V100 GPU Benchmarks – Scaling Study (AU)

1024 vectors

1 node (6 GPUs, ~200k DoFs/GPU) : 2.8x 4 nodes (24 GPUs , ~45k DoFs/GPU) : 1.5x 16 nodes (96 GPUs, ~12k DoFs/GPU) : 1.3x

Figure: Scaling study comparisons of the proposed matrix-free multivector implementation with cell-matrix baseline for 1024 vectors. Case studies: 1092727 DoFs (FEOrder=6); 1191016 DoFs (FEOrder=7); 1157625 DoFs (FEOrder=8) for the Helmholtz problem on V100 GPUs.

Eigenvalue Problem (Chebyshev Filtered Subspace Iteration)

Summit Benchmarks – Scaling Study (Eigenproblem, Uniform Mesh)

1024 vectors, 1 node (6 GPUs, ~200k DoFs/GPU)

FEOrder 6 : 1.6x FEOrder 7 : 1.64x FEOrder 8 : 2.2x

1024 vectors, 4 nodes (24 GPUs, ~45k DoFs/GPU)

FEOrder 6 : 14% FEOrder 7 : 13% FEOrder 8 : 41%

1024 vectors, 16 nodes (96 GPUs, ~12k DoFs/GPU)

FEOrder 6, 7, 8 : ~10%

Figure: Performance benchmarks of our matrix-free implementation compared to the cell-matrix implementation for the eigenvalue problem on uniform meshes. Case studies: 1092727 DoFs (FEOrder=6); 1191016 DoFs (FEOrder=7); 1157625 DoFs (FEOrder=8). Chebyshev polynomial orders 67, 76 and 83 were chosen for FEOrder=6, 7 and 8 respectively.

Benchmarks – Scaling Study (Eigenproblem, Adaptively Refined Mesh)

1024 vectors, 1 node (6 GPUs, ~200k DoFs/GPU)

FEOrder 6 : 1.62x FEOrder 7 : 1.62x FEOrder 8 : 1.65x

1024 vectors, 16 nodes (96 GPUs, ~12k DoFs/GPU) FEOrder 6, 7, 8 : ~10%

Figure: Performance benchmarks of our matrix-free implementation compared to the cell-matrix implementation for the eigenvalue problem on adaptively refined meshes (1 level of refinement). Case studies: 1185321 DoFs (FEOrder=6); 1177963 DoFs (FEOrder=7); 1226673 DoFs (FEOrder=8). Chebyshev polynomial orders 67, 76, and 83 were chosen for FEOrder=6, 7 and 8 respectively.

Beyond Helmholtz Operator

- More realistic problems in various applications
 - Example Large-scale eigenvalue problems arising in Density Functional Theory (DFT) (applications in quantum modelling of materials)

$$\mathbf{A}^{(e)}\mathbf{U}^{(i_{b},e,t)} = \left(\mathbf{K}^{(e)} + \mathbf{M}_{\kappa}^{(e)}\right)\mathbf{U}^{(i_{b},e,t)}$$
$$= \mathbf{N}^{T} \begin{pmatrix} \left[\widetilde{\mathbf{D}}^{(0)}\right]^{T} & \left[\mathcal{G}^{(0,0)} & \mathcal{G}^{(0,1)} & \mathcal{G}^{(0,2)} \\ \mathcal{G}^{(1,0)} & \mathcal{G}^{(1,1)} & \mathcal{G}^{(1,2)} \\ \mathcal{G}^{(2,0)} & \mathcal{G}^{(2,1)} & \mathcal{G}^{(2,2)} \end{bmatrix} \begin{bmatrix} \widetilde{\mathbf{D}}^{(0)} \\ \widetilde{\mathbf{D}}^{(1)} \\ \widetilde{\mathbf{D}}^{(2)} \end{bmatrix}^{T} + \mathcal{G} \\ \mathbf{N}^{(i_{b},e,t)}$$

• Adding another term to the Helmholtz operator

$$S_{IJ} = \int_{\Omega} \nabla V \cdot (\nabla N_I^h(\mathbf{x}) N_J^h(\mathbf{x}) + \nabla N_J^h(\mathbf{x}) N_I^h(\mathbf{x})) d\mathbf{x}$$

[This operator is motivated from FE discretized operator arising in DFT (GGA Functionals)]

$$\mathbf{S}^{(e)}\mathbf{U}^{(e,t)} = \mathbf{N}^T \left(\begin{bmatrix} \widetilde{\mathbf{D}}^{(0)} \\ \widetilde{\mathbf{D}}^{(1)} \\ \widetilde{\mathbf{D}}^{(2)} \end{bmatrix}^T \begin{bmatrix} \mathbf{V}_G^{(0)} \\ \mathbf{V}_G^{(1)} \\ \mathbf{V}_G^{(2)} \end{bmatrix} + \begin{bmatrix} \mathbf{V}_G^{(0)} \\ \mathbf{V}_G^{(1)} \\ \mathbf{V}_G^{(2)} \end{bmatrix}^T \begin{bmatrix} \widetilde{\mathbf{D}}^{(0)} \\ \widetilde{\mathbf{D}}^{(1)} \\ \widetilde{\mathbf{D}}^{(2)} \end{bmatrix} \right) \mathbf{N} \mathbf{U}^{(e,t)}$$

Beyond Helmholtz Operator

1024 vectors, 1 node (Intel Xeon Gold 6248R 48 cores, 2 million DoFs)

1024 vectors, 1 GPU (NVIDIA V100, 1.2 million DoFs)

Publications

 G. Panigrahi, N. Kodali, D. Panda, P. Motamarri : Fast hardware-aware matrix-free algorithms for higher-order finite-element discretized matrix multivector products on distributed systems (*Journal of Parallel and Distributed Computing, 2024*) https://doi.org/10.1016/j.jpdc.2024.104925

DFT-FE Library: https://github.com/dftfeDevelopers/dftfe

S. Das, B. Kanungo, V. Subramanian, <u>G. Panigrahi</u>, P. Motamarri, D. Rogers, P. Zimmerman, V. Gavini : Large-scale materials modeling at quantum accuracy: Ab initio simulations of quasicrystals and interacting extended defects in metallic alloys (SC Proceedings '23) <u>https://doi.org/10.1145/3581784.3627037</u> (ACM Gordon Bell Prize 2023)

Acknowledgement

Collaborators :

• Dr. Phani Motamarri, Assistant Professor, CDS Department, IISc Bangalore (PhD Advisor)

Funding Sources :

Thank You

