

Battery Electrode Simulation Toolkit using MFEM (BESFEM)

Anna Brandl¹, Robert Termuhlen¹, Dirk Colbry¹, Hui-Chia Yu^{1,2}

Department of Computational Mathematics, Science & Engineering
Department of Chemical Engineering & Materials Science
Michigan State University

Batteries

Images from internet

Complexity in battery simulations

MICHIGAN STATE UNIVERSITY

http://www.eco-aesc.com/en/liion.html;

MICHIGAN STATE UNIVERSITY

[7] J. Wilson et al., ECS Trans 7 (2007) 1879; [8] B Yan et al, Journal of The Electrochemical Society, **159** (10) A1604-A1614 (2012)

Electrode microstructure databases

https://www.nrel.gov/transportation/microstructure.html; https://made.ee.ethz.ch/research/open-source-data-andsoftware/battery-microstructure-project.html

MICHIGAN STATE UNIVERSITY

Porous electrode theory, PET (pseudo-2D, P2D) model, pioneered by J Newman.

- 1D equation (longitudinal) for C_e , ϕ_e , ϕ_s . Using **homogeneous effect properties**: D_e^{eff} , κ_e^{eff} , κ_s^{eff} .
- 1D equation (radial) for C_s

Wiedemann et al., *Electrochimica Acta* 88 (2013) 580–588; S.J. Cooper et al., *Journal of Power Sources* 247 (2014) 1033-1039; V. De Lauri et al, *Applied Energy Materials*, **4** (12) 13847-13859 (2021)

Conventional 3D simulations

SBM Formulated electrochemical governing equations MICHIGAN STATE UNIVERSITY

Malik, A. & Yu, H.-C. Journal of the Electrochemical Society 169, 070527 (2022).

Phase separating electrode (graphite)

R MICHIGAN STATE UNIVERSITY

 $\frac{\partial X_{\rm g}}{\partial t} = \nabla \cdot \left[M_g(X_{\rm g}) \nabla \left(\frac{\partial f}{\partial X_s} - \varepsilon \nabla^2 X_{\rm g} \right) \right]$

As more and more Li gets intercalated into Graphite, it goes through phase transformations.

[1] Harris et al., Direct in-situ measurements of Li transport in Li-ion battery negative electrodes, 2009; [2] Ender et al., Anode microstructures from high-energy and high-power lithium-ion cylindrical cells obtained by X-ray nano-tomography, 2014

🐔 MICHIGAN STATE UNIVERSITY

Single Disk simulation

[3] Guo et al., Li Intercalation into Graphite: Direct Optical Imaging and Cahn-Hilliard Reaction Dynamics, 2016

Graphite microstructures

R MICHIGAN STATE UNIVERSITY

Open voxel microstructure data.

ETH Zurich > D-ITET > IfE > MaDE Group

ETH zürich

Materials and Device Engineering Group

News & Events The Group People Education Research Publications

Homepage > Research > Open Source Data and Software > Battery Microstructure Project

Battery Microstructure Project

The microstructure of lithium ion battery (LIB) electrodes and separators can influence battery performance. The LIB community has traditionally relied on a simplified picture of microstructure or computer generated microstructures due to a lack of available experimental microstructural data.

We launched the **Battery Microstructure Project** to provide 3D microstructural and electrochemical data on porous electrodes and separators. The following microstructures are currently available.

1. NMC-based Porous Electrodes

Prof. Dr. Vanessa Wood VP Knowledge Transfer and Corporate Relations

Electrode IIa

Simulated Li concentration in electrolyte and graphite particles

6C charge: complete charge 6 times in 1 hour, i.e., 10 mins per complete charge

Graphite anode simulations

Li plating: $\phi_p - \phi_e < 0$, fire/explode. Only a small fraction of thick electrode is utilized.

Thick electrodes

PROGRESS REPORT

Electrode Materials

Thick Electrode Batteries: Principles, Opportunities, and Challenges

HILL electrode design (a) conventional design 10 µm 200 µm Ę 450 µm 25 52 200 µm 15 µm Al foil Cu foil Cathode Anode Separator 6 Separator 28% Separator 6% Increase energy Electrode Electrode density by removing 56% 88% inactive packaging materials. Current collector 17% Current collector 6%

Yudi Kuang, Chaoji Chen,* Dylan Kirsch, and Liangbing Hu*

Novel thick electrode

Create tunnels on voxel microstructures: setting voxel value to be zero. d: inter-tunnel distance Hexagonal-patterned tunnel array *r*: tunnel radius

Perforated microstructures

MICHIGAN STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY

Optimal achieved capacity

🐔 MICHIGAN STATE UNIVERSITY

Hexagonal arrang., d = 87.7 μ m

🐔 MICHIGAN STATE UNIVERSITY

- For anodes of thickness < 110 μ m, tunnels do not enhance electrode performance.
- A smaller *d* increases achieved capacity and it decreases the optimal radius.

🐔 MICHIGAN STATE UNIVERSITY

Our group has been developing voxel-based simulation libraries

- In-house code:
 - FORTRAN 90, 08; MPI
 - Finite difference method
- ➢ BESFEM:
 - o MFEM solver
 - Basic electrochemical process battery electrodes
- A. Malik, K. Snyder, M. Liu, H.-C. Yu, *Journal of Energy Storage* 77, 109937 (2024).
- A. Malik, H.-C. Yu, Journal of the Electrochemical Society 169, 070527 (2022).
- D. Qu, H.-C. Yu, Acs Appl Energy Mater 6, 3468–3485 (2023).
- R. Termuhlen, K. Fitzmaurice, H.-C. Yu, *Comput Method Appl M* **399**, 115312 (2022).
- D. Qu, R. Termuhlen, H.-C. Yu, *Journal of The Electrochemical Society* **167**, 140515–12 (2020).
- H.-C. Yu, D. Taha, T. Thompson, N. J. Taylor, A. Drews, J. Sakamoto, K. Thornton, *Journal of Power Sources* **440**, 227116 (2019).
- H.-C. Yu, M.-J. Choe, G. G. Amatucci, Y.-M. Chiang, K. Thornton, *Computational Materials Science* 121, 14–22 (2016).

- Phase transition in complex microstructure.
- SBM with AMR
- **EIS** of complex microstructures
- SBM for Navier-Stokes
- Diffuse double layer
- Linear elasticity
- Grain boundary diffusion

Elements: Open-Source **B**attery **E**lectrode Simulation Toolkit using MFEM (BESFEM) NSF CSSI, # OAC2311466

Sequential BESFEM -- Benchmarking

🐔 MICHIGAN STATE UNIVERSITY

Sequential BESFEM – 2D test

MICHIGAN STATE UNIVERSITY

FEM vs FDM

FEM:

High accuracy

FEM: 9 points

- High computational cost (slow)
- e.g., default Laplace operator, ∇^2

FDM: 5 points

- In terms of speed, MFEM is out-performed by inhouse FDM code in original pixel resolution
- Strategy: use coarse mesh away from the bulk.
- Weighing computing costs against accuracy

Work in progress

Preprocessing units

- TIFF importer -- ✓
- Pixel intensity smoother
 - Sequential -- ✓
 - OOP in progress
- Mesh coarsener

Modeling units

Class:

- Concentration
- Electro-potential

Reaction calc.

Use the following

example codes

Ex16p

Ex6p

Spin-off (potential miniapps)

- Macro-homogeneous PET simulation
- Microstructure tortuosity calculator

- Jan–May 2024: sequential code
- May—present: OOP

Dr 2 🕅	⊠ 2				
Q Search or go to)	B BESFEN	1 ⊕		û ∽ 🛱 Star
ect		१ main ∽ besfem	History Find fi	le Edit - Code -	Project informat
BESFEM					
Pinned	~	adding a Comm	nand line interface tool	55982df4 🕅	-O- 7 Commits
Issues	0	Dirk Colbry aut	hored 1 month ago		₽ 6 Branches
Merge requests	0	Name	Last commit	Last update	O Tags
Manage	>	Code 2D	adding a Command line	1 month ago	🗔 50.1 MiB Pro
Plan	>		adding a Command tine	T month ago	README
Code	>	🗀 docs	Adding Doxygen support	1 month ago	+ Add LICENS
Build	>	.gitignore	Adding Doxygen support	1 month ago	+ Add CHANG
Secure	>	M README.md	Initial commit	4 months ago	+ Add CONTR
Deploy	>				+ Add Kubern
Operate	>	README.md			+ Set up CI/CI
Monitor	>	DEOFENA			+ Configure Ir
Analyze	>	BESFEM Created on			
Settings	>	Getting starte	ed		May 30, 2024
		To make it easy for next steps. Already a pro? Just	you to get started with GitLab, here's a list edit this README.md and make it your ow	of recommended	
		easy? Use the temp	elate at the bottom!		
		Add your files	3		
		Create or uploa	Id files the command line or push an existing Git r	repository with the	

Fun REU project

Sean Gibson, Sanika Kapre

VR set

VR visualization of battery electrode simulations

Team members

- Ph.D. student: Anna Brandl (brandlan@msu.edu)
- Fixed term Asst. Prof. Robert Termuhlen (termuhle@msu.edu)
- Sr Specialist Dirk Colbry (colbryd@msu.edu)
- Asso. Prof. Hui-Chia Yu (hcy@msu.edu)

Collaborators/co-developers are WELCOME!! -- <u>hcy@msu.edu</u>, <u>colbryd@msu.edu</u>

Potential add-ons:

Aging model (side reaction), cycling stress, thermal simulations, Li metal plating, characterization (EIS), PET (P2D), etc.

Tunnel effect

MICHIGAN STATE UNIVERSITY

Direct image-based simulation of NMC111 cathode K MICHIGAN STATE UNIVERSITY

Ming Tang, Rice Univ

Image-based simulation

