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▪ Nonnegative least-squares solver (NNLS) for algebraic constraints

▪ Reduction of NURBS patch quadrature rules

▪ Empirical quadrature procedure (EQP) for reduced order models

▪ Conclusions

Outline
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▪ Numerical quadrature rules are usually applied element-wise, with the form

▪ Quadrature rules are usually chosen to be exact for a prescribed polynomial order.

▪ In a subspace, sparser rules can maintain accuracy.

▪ Constraints for accurate integration of finitely many functions yields an algebraic 
system defining possibly sparser rules.

▪ An algebraic method can be used for any basis type and quadrature type.

Algebraic construction of sparse rules
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▪ For a Lagrange element of order 1 on a rectangular element, 
DiffusionIntegrator uses a tensor-product rule exact for order 2 polynomials.

▪ For higher order, more quadrature points are used.

Basic example of a quadrature rule
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▪ If we constrain the order 2 rule only to integrate constants, a single point suffices with 
changed weight, e.g.: p = (a, a), w = 1, a = 0.21132486540518711775.

▪ The under-determined constraint system would be

▪ For a single basis function product x2, a single point still works:

▪ For a single linear combination of basis functions, a single point still works.

Basic example of reduced quadrature for a subspace
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▪ We solve an under-determined constraint system for weights.

▪ For more details, see Lawson and Hanson 1974 or Adrian 
Humphry’s thesis, 2023.

▪ Weights can be negative in quadrature rules, e.g. MFEM triangle 
rule for degree 3.

▪ For positive definite forms, nonnegativity preserves the positive 
definiteness.

▪ Linear programming has also been used by Masayuki Yano, but 
NNLS has been more successful. 

▪ MFEM has a serial implementation. libROM has a parallel 
version, using SCALAPACK.

Nonnegative Least Squares (NNLS) Solver
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NURBS patches in isogeometric analysis (IGA)

▪ Curved geometry

▪ High order, tensor product bases

▪ Any number of elements

▪ Spacing formulas



8
LLNL-PRES-870663

▪ Example of degree 3 NURBS with 4 uniform elements in 1D.

▪ Basis functions span multiple elements, with limited interaction.

NURBS basis functions are tensor products of 1D functions

The NURBS Book, Fig. 4.3(a) MFEM reproduction
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1D order 3 NURBS basis on 4 elements
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1D order 3 Lagrange basis on 4 elements
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▪ Joint work with Derek Thomas and Coreform LLC, 2022 SBIR Phase I DE-SC0022458.

▪ Instead of element-wise quadrature, we can use fewer points with patch-wise 
quadrature.

▪ MFEM PR 3088 introduced patch-wise integration in 2023.

▪ Example: mfem/miniapps/nurbs/nurbs_patch_ex1.cpp

▪ MFEM now supports:
1. Patch-wise matrix assembly or partial assembly using exact integration, exploiting sum 

factorization and limited interactions of basis functions. 
2. Patch-wise matrix assembly with sum factorization and reduced rules in each dimension.

NURBS patches in isogeometric analysis (IGA)
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Diffusion integrator with sum factorization

Applying the operator to a vector can be done in O(pd+1) 
operations instead of O(p2d):
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▪ NURBS spaces may have fewer basis functions per patch than Lagrange elements.

▪ Instead of element-wise quadrature, we can use fewer points with patch-wise 
quadrature.

▪ Hiemstra 20191 presents methods for efficient assembly with NURBS bases, using sum 
factorization, but we additionally use NNLS for reduction of rules.

▪ In each dimension of the tensor product, products of 1D basis functions or their 
gradients are integrated.

▪ A reduced rule can be computed on the fly in each dimension of each patch, for each 
row (basis function) in matrix assembly.

NURBS patches in isogeometric analysis (IGA)

1. Hiemstra, Sangalli, Tani, Calabro, Hughes, Fast formation and assembly of finite element matrices with 
application to isogeometric linear elasticity. Comput. Methods Appl. Mech. Engrg. 355, 2019, 234 - 260.
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Miniapp nurbs_patch_ex1

Assembly type Setup time (s)
Relative l2 

error

Element-wise matrix 274 0

Patch-wise matrix, full 
rules (optimized)

50 2.01023e-13

Patch-wise matrix, 
reduced rules

32 4.0273e-12

Patch-wise PA, full rules 
(optimized)

14 3.22942e-09

• Serial CPU experiments.
• 61200 DOFs, 128x16x16 mesh elements (order 4), 2 

patches.
• ”Ground truth” element-wise rule for order 8 = 2 * 4.
• Performance gains increase with FE order.
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Reduced order modeling (ROM)

Goal: accelerate physics simulations without losing much accuracy by exploiting data 
and governing equations [Data-driven and projection-based].

high fidelity 
models /

experiments

collect & 
compress 

data 

low-dim
subspace

approximate
system solution

project & propagate 
governing equation 

in time

ICF-like Implosion 
(BLAST)

Open source libROM: https://github.com/LLNL/libROM
https://github.com/LLNL/pylibROM

https://github.com/LLNL/libROM
https://github.com/LLNL/pylibROM
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▪ Governing equation:

▪ Solution approximation:

▪ Reduced system after Galerkin projection:

▪ Euler time integration:

Projection-based (POD) reduced order modeling

Scales with FOM size: Hyper-reduction 
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▪ Previous work on EQP includes:
— Doug James et al: Optimizing cubature for efficient integration of subspace deformations, 2008.
— ECSW by Charbel Farhat et al.
— DG formulations by Masayuki Yano et al.

▪ EQP produces a sparse quadrature rule on a small number of elements.

▪ Integration of nonlinear terms is of the form

for a linear operator          of test functions and nonlinear operator              of trial 
functions.

Empirical quadrature procedure (EQP)
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▪ EQP aims to find a sparse global quadrature rule with minimal M, satisfying

for all snapshots       (with parameter      ) and reduced basis vectors       . 

▪ Defining the matrix with entries 

the sparse rule is represented by the solution r, with M nonzeros, of

▪ This underdetermined system is solved approximately by nonnegative least squares 
(NNLS, Lawson and Hanson 1974).

Empirical quadrature procedure (EQP)
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▪ Semi-discrete Lagrangian nonlinear conservation laws

▪ Explicit time integration with adaptive time-stepping: RK4, RK2-Average.

▪ Mesh nodes move with the position variable 𝒙.

▪ Laghos (high-order FEM Lagrangian hydrodynamics MFEM miniapp) is used for full-
order simulation.

Lagrangian hydrodynamics in Laghos miniapp

Momentum conservation: 

Energy conservation:

Equation of motion:
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▪ Substitute bases for each variable, then use Galerkin projection:

ROM formulation for Laghos

Momentum conservation:

Energy conservation:

Equation of motion:

• Reduced mass matrices: 

▪ Time-windowing is used to limit the reduced bases and quadrature rules.

▪ Separate rules are computed for momentum and energy equation RHS.
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▪ Reproductive testing (training data).

▪ Mesh is 8x8x8, with 64 = 4^3 quadrature 
points per element, FE orders (2,1).

▪ Average (over 49 time windows) 
reduced number of points: 94 / 32768

▪ ROM-EQP relative L2 error: 3.77326e-05

▪ ROM relative L2 error: 2.71326e-05

▪ FOM run time: 139 s

▪ ROM run time: 3.91 s

▪ Speedup factor: 36

Sedov blast example
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▪ Reproductive testing (training data).

▪ Mesh is 14x6x2 = 168, with 64 points per 
element, FE orders (2, 1).

▪ Average (over 66 time windows) reduced 
number of points: 45 / 10752 

▪ ROM-EQP relative L2 error: 5.28973e-06

▪ ROM relative L2 error: 2.14006e-06

▪ FOM run time: 57.6 s

▪ ROM run time: 6.46 s

▪ Speedup factor: 8.9

Triple point example, low order
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▪ Reproductive testing (training data).

▪ Mesh is 14x6x2 = 168, with 216 = 6^3 points per 
element, FE orders (3, 2).

▪ Average (over 136 time windows) reduced number 
of points: 44 /  36288

▪ ROM-EQP relative L2 error: 6.94712e-05

▪ FOM run time: 365 s

▪ ROM run time: 16.9 s

▪ Speedup factor: 22

Triple point example, higher order
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▪ Mesh is 8x8x8, with 64 quadrature 
points per element, FE orders (2,1).

▪ Average (over 34 time windows) 
reduced number of points: 65 / 32768

▪ ROM-EQP rel. L2 error: 2.13665e-06

▪ ROM rel. L2 error: 1.03051e-06

▪ FOM run time: 16.3 s

▪ ROM run time: 2.58 s

▪ Speedup factor: 6.3

▪ Reproductive testing (training data).

Taylor-Green example
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▪ Reproductive testing (training data).

▪ Mesh is 32x32, with 36 points per element, FE orders (3, 2).

▪ Average (over 59 time windows) reduced number of points: 63 / 36864

▪ ROM-EQP rel. L2 error: 4.16793e-05

▪ ROM rel. L2 error: 1.5083e-05

▪ FOM run time: 16.8 s

▪ ROM run time: 6.62 s

▪ Speedup factor: 2.5

Gresho vortices example
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▪ Joint work with Siu Wun (Tony) Cheung and Chris Vales (Dartmouth).

▪ The assumptions are imposed as constraints in the ROM simulation.

Energy-conserving EQP for Laghos
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▪ Reproductive testing (training data), ~same reduced basis for basic EQP and CEQP.

▪ Energy is conserved to machine precision, unlike the basic EQP.

Energy-conserving EQP for Laghos
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▪ Computing reduced 1D rules for tensor product spaces is much faster than 3D rules.

▪ The algebraic formulation is generic, for any type of quadrature or finite element.

▪ Physical constraints can be imposed, even with reduced rules.

▪ Great performance gains can be attained without losing accuracy.

Conclusions
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Open-source libraries

• https://github.com/mfem/mfem
• https://github.com/CEED/Laghos/tree/rom
• https://github.com/LLNL/libROM
• https://github.com/LLNL/pylibROM

https://github.com/LLNL/libROM
https://github.com/LLNL/libROM
https://github.com/LLNL/libROM
https://github.com/LLNL/pylibROM


Thank you for your attention!

copeland11@llnl.gov
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