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We are working on a series of MHD solvers for tokamak simulations

All of them require a good initial condition: a cut-cell Picard-based MHD equilibrium solver

Overview of dynamical MHD and MHD equilibrium solvers 
developed at LANL/GT

1. Compatible FEM

(G. Wimmer, et al.)
2. Mimetic FD

(Z. Jorti, et al.)
3. Stabilized FEM

(J. Bonilla, et al.)

Issues:

• Mismatching between FD structured 

grid and FEM unstructured grid

• Picard fails to converge for hard cases

Current workflow



Axisymmetric MHD equilibrium leads to Grad-Shafranov 
equations

Grad-Shafranov equations are derived from MHD force balancing [in (r, φ, z)]:

Therefore, the governing equations become:

Force balancing

MHD approx.

Tokamak Rep.

[DeepMind and EPFL, Nature, 2022]



1. It is a free-boundary problem where one can make a choice on the computational boundary.

2. A shape control is needed to ensure the plasma stays inside the chamber:
1. Control the total current Ip

2. Control the plasma domain        by a list of pre-determined control points.

Two additional components

Conventional FD solver 

on structured mesh

Our cutcell solver 

[SISC, 2021]
Current work: compatibility 

and far-field BCs

ITER configuration



More numerical challenges

• The plasma domain        is not known a prior and depends on the 
solution       in a nonlinear way: 

1. Non-diverted case: the level set of       attaching the wall

2. Diverted case: the saddle point closest to the magnetic axis

The conventional wisdom among physicists is that it is not 
possible to perform a Newton solve (not true!).

• We are interested in the 0-β equilibrium (more challenging):

where     is a known function given by some experimental 
measurement table and α is another tunable parameter.

Two cases for the plasma domain 

[Heumann et al. JPP, 2015].



• A PDE constrained optimization problem

• Target:
1. Grad-Shafranov PDE

2. Plasma shape

3. Total plasma current

• Control parameters: 
1. α in the source term

2. a list of current density in the coils: I={I1, I2, … } 

• Non-conventional components in the solver:
1. a saddle point search needs to be performed in each iteration (determined based on the sign changes in the local 

solution difference)

2. the plasma domain is then determined (a tree search algorithm is performed, populating from the magnetic axis)

3. analytical Jacobian requires a shape calculus (discussed later)

4. The far-field boundary condition requires a dense double surface integral

High-level summary of our problem



Weak formulation of Grad-Shafranov equations

We aim to solve the following nonlinear problem using H1 FEM:

where I stands for the coil current density, 

A custom integrator is developed 

to support this double integral 

on surface (thanks to Veselin))



Analytical Jacobian requires shape calculus

• Is it possible to compute the analytical Jacobian for such a complicated case (without AD)?
This has been addressed in [Heumann et al. JPP, 2015].

• The idea is based on shape calculus. Consider Gateaux derivative:

where f is an integral of over the domain                  . The evaluation of this derivative can 
utilize the following identity (Leibniz integral rule)

where                 is the velocity of the boundary.

• n.v can be computed from the fact that the plasma boundary point x is implicitly defined by



Plasma shape optimization constrained by PDE

• Minimize the squared distance between 𝜕Ωp and the control points:

• Regularization on currents: 

• The full optimization problem:

note: 𝑔 is nonlinear

constraint: Grad-Shafranov PDE

constraint: control plasma current



Nonlinear system

• The problem can be casted into the following nonlinear system

where y stands for the numerical solution, u stands for the current, and α is the tunable scalar 
parameter in the RHS of f.

• The corresponding Lagrangian is

where p and λ are Lagrange multipliers. 



Linearized system and block factorization

We obtain the following linearized system

where u is a small vector, α and λ are scalar, and y and p are large vectors of the same size.

The exact block vectorization leads to the following system:

where

Laplacian operator with 

rank-1 perturbation 



Preconditioner idea (failed)

We seek a good preconditioner for a small rtol=1e-8.

• Idea 1:

Pro: symmetric (but not positive definite) 

Cons: 1. A and C are very low-rank with huge values; 
           2. Schur complement is not SPD (with a regularization term A+βI).

• Idea 2: 

Pro: it is a generalized saddle point problem and appears to be compatible with Hermitian and 
skew-Hermitian splitting (HSS) preconditioner.

Con: HSS did not work when the off-diagonal B is heavy.



Preconditioner ideas (succeeded)
This reordered system behaves better

• Idea 3:

Averaged: 90 outer linear iterations (90 V-cycles with a large system)

• Idea 4: 

Averaged: 40 outer linear iterations (80 V-cycles); Woodbury formula can help a little 



Preconditioner ideas (succeeded)
• Idea 5:

Averaged results: 30 outer linear iterations BUT with a lot more expensive inner solver ~ 7000+ 
V-cycles

• Idea 6:

where

Averaged results: 30 outer linear iterations (60 V-cycles)



• Error-indicator-based:

• Feature-based:

Leverage MFEM’s conforming AMR



Taylor state equilibrium (0-beta)

AMR is found to help the Newton iterations Numerical solution and its zoom-in



The current workflow to build 

Load the Grad-Shafranov solution to a dynamical MHD solver

trimmer.cpp
field-interp.cpp

extruder.cpp 21

3
gslib with compatible 

FEM
(thanks to Ketan)



Future improvement

• The mesh should be aligned with the 
separatrix:

• Inequality constraints may help plasma 
control in practice. See DeepMind’s RL work 
[Nature 2022].
E.g.: 
R constraint: good=0.02, bad=0.05
Z constraint: good=0.02, bad=0.2

• More complicated shape control in the 
SPARC tokamak:

Internal interface fitting on the fly



• We develop an adaptive Newton-based Grad-Shafranov solver for the shape 
control to seek 0-β tokamak equilibriums.

• Newton solver is much more effective than the Picard-based solver.

• Effective preconditioners for the linearized system have been explored. 

• The algorithm is deployed on MFEM with conforming AMR and its flexible solver 
interface.

• Future work: more complicated shape control (SPARC), requiring a workflow 
incorporating solvers, AMR, and a meshing capability. 

Conclusions
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