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Topology Optimization

= The hello world problem: Compliance minimization

- We use Solid Isotropic Material Penalization (SIMP)
and Helmholtz type filter

minimize / f udx
7 Q

subject to — div(r(p)C : e(u)) = f in Q,
B.C.s,
—V(Vp)+p=pin Q,
Onp =0,
0<p<1,

/ pdx < 0.
Q

- Here, r(p) =py+(1—po)iP. € =Tmin/2V2
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Goal of this Talk

13th-order interpolation

[=Std Interp| |
"= Proposed

= Introduce a new method, SiMPL, for TO with 0.5

- Point-wise feasible solution at each iteration 0

(even with high-order) 21 —05 0 05 1

~ Easy to implement

Vpa1 = Uk — . VF(pr) + g

= No additional memory (variable / large system solve)

= Fast convergence
1072

1071
— (39) SIMPL-A 10-28 B
° ~(35) SIMPL-B i
Example 37: Topology Optimization 5 m ;1),88; 1\04(1\3/[1\/{ 1073 %
This example code solves a classical cantilever beam topology optimization problem. The aim is to find an optimal material '_Q.' § 4
density field @ in L!(€2) to minimize the elastic compliance; i.e., % 10
O
minimize/ f - u(p)dx over o ELY(Q) : 1075 -
Q . . - N [l [7 ST
subjectto 0 <p =<1 and [/ odx=0vol(Q). 0L ‘ 10_6
) 0 50 100 150 200 250 0 50 100 150 200 250

[teration k Iteration k
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Projected Gradient Descent Method

= The unconstrained gradient descent method
Pk+1 = Pk — . VF(pr

‘ 1
= argmin F'(py,) + LVF(,Ok) - (p — pr)dx + EHP - pk”2L2(Q)

. 1
= argmin / VE(pr) - pd + 5—|lp — prllT2 o
0 Jo L

= For constrained minimization problem,
we obtain a “Projected” gradient method

. 1
Pht1 = argmm/ VE(pr) - pde + 5—|lp - el 72
peC Q 895 ’

= Pel(pr — ar.VF(pg))

=
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Mirror Descent Method

= Mirror descent is a generalized gradient descent method

Pk+1,GD = al"gﬂéiﬂ/ VEF(pr) - pdx + ——HP okl 720
peE

Pk+1 MD = argmin / VF(py) - pdx + —Dgo(p, Pk,
peC ) 897

=Pe((Vo) " (Volpr) — axVF(pr)) Pe(p) = argmin Dy (g, p

acC
= The Bregman divergence is a generalized squared distance

= Dy(p,q) = (p) —¢lq) — /W() (p — q)da

~ If ( is strictly (or strongly) convex, thensois D,(-,q

= Not symmetric, No triangle inequality

BROWN SiMPL Method for Topology Optimization | Dohyun Kim 4/ 16



Bregman Divergence and Mapping

~ Fermi-Dirac entropy ¢(p) = / plog(p) + (1 — p)log(1 — p)da
0

o O\
V(p) = log (ﬁ) Ve
N 1
(Vo) W) = oo | \W{
= oy

,,fﬁ‘fn
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Projected Mirror Descent

y

The projected mirror descent

pre1 = Pe((Vo) " (Volpr) — arVF(pr))
=Pe(a(o " (pr) — arVE(py))
=o(0 " (pr) — e VF(pr) + 1

Here, u..q1 € IR solves the volume correction equation

/ o0 (1) — anVF(pr) + s )da = 9]0
O

Ao

BROWN SiMPL Method for Topology Optimization | Dohyun Kim

01

Ok 4

Primal

Latent




SIMPL - Latent Variable

~ Introduce the latent variable ¢ = 0~ *(p

prr1 =0(0 (o) — axVF(pr) + pgs1 o7 (p) = log <ﬁ>
0 (phwa) = O, o) VRVE D Rtk

- We find a discrete approximation wk,f

o(40) — 0(20) ~ 107"

13th-order interpolation

Toa—— (o 1.25]

—Std Interp| & T
== Proposed

~ Major benefits 0.75

- Update step is linear in ¢/ with a scalar nonlinear equation 0.5
~ No logarithmic transform ¢~ '(z) = log(z/(1 — z) 0.25
0

= Bound constraint is satisfied point-wise

S
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Backtracking Line Search

- Step size plays a key role to obtain an efficient and stable algorithm

“0 10 20 30 40 50 60 70
Iteration k

o = D0k

o = 10k g
~
S
&
F(p,) =3.75-1073 = 107 4000
Jo1078 3000 |
QU =
= D
= — S
(072 25A 8 104 2000 Z-
2 2
g I 9
F(p,) =3.72-1073 S 1075} 1000 =
N r
. g
= 108 0
O
I

F(p,)~T7-1073

B. Keith and T. M. Surowiec, Proximal Galerkin: A structure preserving finite element method for pointwise bound constraints, arXiv:2307.12444v5, 2024
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Backtracking Line Search

- Step size plays a key role to obtain an efficient and stable algorithm

= Convergence analysis may be carried out with “relative smoothness”

‘ /O(VF(QU) —~ VF(y))(z - y)da:| < L/(;(Vgo(az) — Vo) (z—y)dz Yr,yel

‘ Jo(V — VEF(pr-1))(px — pr—1)dz
f (W — Y—1)(pr — pr—1)dx

Qf = L;l.
- We use a generalized Armijo rule (SiIMPL-A) or Bregman rule (SiMPL-B) with
the above initial step size Flprsra) <F(pr.)
F(prs1.q) <F(prq) +VF(pr,q)" My(Prr1,q = Pryq)
+ 1V (prg) " My(pisiq — Prg) + 2 Delprrig i)
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- Implemented in MFEM C++ Library
= Comparison with MMA and OCM

- Mesh independent behavior N ume r-i Cal
- Beyond compliance minimization
~ Bridge Design Resu ltS

= Compliant mechanism

Method of Moving Asymptotes #4486

I‘l Open talinke wants to rge 8 commits into
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MBB Beam Problem with h=1/256

’ 3.0
102
1.6 |
1.4 = (39) SIMPL-A
o 19 —(35) SIMPL-B
= ) == (195) OCM
= 1g ++(300) MMA
2.0.8%:
=
0.4
D O e e “imemgl
0 50 100 150 200 250 o 0 50 100 150 200 250
[teration k Iteration k
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MBB Beam Problem with h=1/256

3.0
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Iteration k
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S
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i

F(p*)

KKT error

SiMPL-A || 1.2055 x 10—3

3.63 x 10~°

SiMPL-B || 1.2083 x 10—°

8.74 x 10—

OC 1.2129 x 10—3

1.93 x 10—

MMA 1.2054 x 10—3

4.16 x 103

0.0004:

0.0002:

~0.0002

O .‘hﬂl-l-l-l-l-l-l-l-‘l ‘-{m‘ﬂlﬂl""h‘l;. TTNTETETE R
E= | e

—0.00040§

50 ; 100 150 200 250
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MBB Beam Problem with h=1/256

SIMPL-A

e

=
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Mesh Independent Convergence

1072
1.6, 109
1.4% |—(36) SIMPL-A:1/64 10-1
o 12 1 |=(39) SIMPL-B:1/64 |
=7 | |(36) SIMPL-A:1/128 16—
= -+(33) SIMPL-B:1/128| & 13
= 0.8} |-+ (36) SIMPL-A:1/256| <5
S 0.6 ¥ 36) SIMPL-B:1/256 10—}
&
0.4 10-5"
0'8 | 10~%¢ | — |
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
[teration k& [teration k [teration &
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Cantilever - 3D

Converged after 44 iteratic

=

S
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Self-weight Compliance Minimization

- Self-weight bridge design

min u’K(p)u
o
subject to K(p)u=f+ M(gp)
(€A +M)p = Mp
1"Mp > 6|Q|

Converged after 81 iterations

=
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Compliant Mechanism

= Force Inverter

mgn —rl u
subject to K(p)u=f;,
(A +M)p =Mp
0<p; <1,
17Mp > 6|
\ 5

Af;

S
S
X

S

- 163 Itérations A

126 lterations
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Concluding Remarks

~ We introduce the SiMPL method for topology optimization
= The solution at each iteration is point-wise feasible
= Update rule in the latent space is easy to implement
= Computational cost at each iteration is equivalent to gradient descent methods
- Backtracking line search results in fast and stable convergence
= It outperforms OCM and MMA for all benchmark problems we tested
~ A high-order interpolation in the latent space
does NOT suffer from the oscillation in the primal space
= Extend it to high-order scheme - Requires bound-preserving high-order filter solver
= Multi-material topology optimization
= Multi-material constraints can be handled when we employ different entropy
= More general constraints

- Stress constrained optimization, ...

A7)
S
=
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Proximal Point Method

- Censor and Zenios 1992, Chen and Teboulle 1993

Y

BROWN

min  F(x)
T
st e K

The proximal point method is an iterative method

, 1
xi1 = arg min{F(x) + —|x — azkHZ}
x 2001

We replace the Euclidean distance to a Bregman distance
, 1
Li+1 = arg mén{F(az) + a—Dh<w7wk+1)]
L
where the Bregman divergence is defined by

Dy(x,y) = h(z) — h(y) — (W' (y),x —y

with a strictly convex and differentiable function A

SiMPL Method for Topology Optimization | Dohyun Kim

Proximal Minimization Algorithm with D-Functions'?
Y. CENSOR® AND S. A. ZeNios*

Communicated by O. L. Mangasarian

Abstract. The original proximal minimization algorithm employs
quadratic additive terms in the objectives of the subproblems. In this
paper, we replace these quadratic additive terms by more general D-
functions which resemble (but are not strictly) distance functions, We
characterize the properties of such D-functions which, when used in
the proximal minimization algorithm, preserve its overall convergence.
The quadratic case as well as an entropy-oriented proximal minimization
algorithm are obtained as special cases.

CONVERGENCE ANALYSIS OF A PROXIMAL-LIKE
MINIMIZATION ALGORITHM USING BREGMAN FUNCTIONS*

GONG CHEN! AND MARC TEBOULLE'

Abstract. An alternative convergence proof of a proximal-like minimization algorithm using
Bregman functions, recently proposed by Censor and Zenios, is presented. The analysis allows the
establishment of a global convergence rate of the algorithm expressed in terms of function values.

Key words. Bregman functions, proximal methods, convex programming

AMS subject classification. 90C25

1. Introduction. Consider the convex optimization problem

1) (P)

where f : IR"™ — (—00,+00] is a proper, lower semicontinuous convex function. One
method of solving (P) is to regularize the objective function by using the proximal
mapping as introduced by Moreau [12]. Given a real positive number A, a proximal
approximation of f is defined by

) fa(@) = inf{f(u) + 1/2\ |}z — ul|*}.

min{f(z) : z € R"},

23 /19




Proximal Point Method

- The proximal iterate
. 1
Ty = arg m{gn{F(w) + a—Dh(a}, Thi1))
L

can be found by solving the first-order optimality condition

aVaF(x)+ Vih(z) = Vih(x,

- When we consider a constrained optimization problem,
F is often selected so that dom(h) = K
and its gradient has closed form inverse

= Then we always have feasible iterates

= Converges provided with 7 o — X

=

S
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Latent Variable Proximal Point Method

- Keith and Surowiec 2023

y

akaF(wkH) + 33;2_*_1 = Ty,

Lk+1 — th_l(mz“) = 0.

= In a continuous setting, the dual variable has no crucial role

- However, in a discrete setting,

Ve Fp(Thrt1) + X1 =g

Lhk+1 — th_l(wi,kﬂ) =0,

we have an additional representation of solution, = ~ V_h™'(z}

This is feasible point-wisely

— —
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If we define dual variable, x* = Vh(x , then

PROXIMAL GALERKIN: A STRUCTURE-PRESERVING FINITE
ELEMENT METHOD FOR POINTWISE BOUND CONSTRAINTS

BRENDAN KEITH* AND THOMAS M. SUROWIECT

Dedicated with respect and admiration to Leszek Demkowicz on the occasion of his 70th
birthday anniversary.

Abstract. The proximal Galerkin finite element method is a high-order, low iteration com-
plexity, nonlinear numerical method that preserves the geometric and algebraic structure of point-
wise bound constraints in infinite-dimensional function spaces. This paper introduces the proximal
Galerkin method and applies it to solve free boundary problems, enforce discrete maximum princi-
ples, and develop a scalable, mesh-independent algorithm for optimal design problems with pointwise
bound constraints. This paper also provides a derivation of the latent variable proximal point (LVPP)
algorithm, an unconditionally stable alternative to the interior point method. LVPP is an infinite-
dimensional optimization algorithm that may be viewed as having an adaptive barrier function that
is updated with a new informative prior at each (outer loop) optimization iteration. One of its
main benefits is witnessed when analyzing the classical obstacle problem. Therein, we find that
the original variational inequality can be replaced by a sequence of second-order partial differen-
tial equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements.
Throughout th#~ -=~=1- -m ~mwizs md moccomnl omcomnndod comdaibocbioe s 41t 3y he of independent
interest. The sson equation; (2) an
algebraic/geo stizations and certain
infinite-dimer gorithm for two-field,
density-based salerkin methodology
combines ide: ebra, and differential
geometry anc as within variational
and numerica itions of our methods
to facilitate r
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Latent Variable Mirror Descent

= The first-order approximation of objective function

. 1
Tkl = arg ma}ﬂ{F(CUk) + (Ve F(xr), z — x)) + o Dy(x, 1))
. 1
= arg min{(VoF (k) x) + —Da(@, Tp+1)}

= This method is called mirror descent, and it has explicit form
Tit1 = Vhy, (Voh(zy) — ap Vo F ()
~ In terms of the latent variable, * = V_h(x

k k A
Ty =xp — Vg F(xp

=
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- What is Topology Optimization

Topology
- Adaptive Step Size - Guided Initial Guess Optlmlzathn

- Projected Mirror Descent with Latent Variable

S
= -

S
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Topology Optimization

. u
e (f,u)

st. V-(r(p)C:e(u))=Ff inQ 4+ B.Cs
—“Ap+p=p inQ,
0,0 =0 on 01,

/pZﬂQL
Q

0<p<l.

where r(p) = pg + (1 — po) o
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Topology Optimization

~  We choose h(p) = / plnp+(1—p)In(l —p

9
S~ (p) := V,h(p) =lnp—In(l—p)=In . y
1
S(p*) =V, i (p") = Fem—p & 0D
3rd order Interpolation 13th order Interpolation
0.8 ( 08 :
0.6/ op, | 0.6 o py
0.4 *Sp) 04 : +S(p,) |
0.2 y J |
or——— \
-1 0.5 0 0.5 1 0.5 1

=

S
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Projected Mirror Descent Method

Algorithm 2 Projected Mirror Descent

1: Given dual density p; € Q5 an!(!i step size ay.
2: Solve for filtered density px € Qp,

~

e (Vor, Va) + (Pr, @) = (S(pi),q) Vq € Qn.

3: Solve for displacement u; € V3,

(r(pr)C : e(up), Vo) = (f,v) Yo € Vj.

4: Compute gradient G = IIwy, € @} where Wy, € Qh solves

GQ(V’LT}k, VC]) -+ (’LTJk, Q) = —(T’(ﬁk)(c : 5(uk)) : €(uk),q) VQ € Qh.

5: Set pr, 1 = pr — axGr + p where p € R solves

| 80— Gt = el
Q
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Adaptive Step Size

= The convergence of Mirror Descent can be proved

_ _ VF(m)_VF(y)aw_y\
1 > ! e ( /
Mo =T T ek (Vh(z) — Vh(y),x — y)

— (VF(x) - VF(y),x —y)
xueK (aj* ~ y*v T — 'U)

= This motivates the choice of step size

(Phk = Phok—11Phk — Phk—1)
(VFE(prx)— VFE(pnhk-1),Phk — Phk—1,

= Armijo condition is used to have monotone decreasing objective

A =

Flong+1) S Flpng) — ci(VF(pnk )y Phk+1 — Phik,

=
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Main Results

1. h: L((>(<)3,1)

primal representation, Vh € L*°(Q2) by

(Voh(p);q) = (In

() — R is strictly convex and differentiable. Also, we can find

P 1
1_p,q) Vg € L().

2. F is differentiable with respect to p. Its gradient V,F(p) € L*°(2) can
be represented by

(VoF(p),q) = (W,q) Vg€ L*(Q).

3. The step size aj satisfies the Armijo condition in finite iteration with
1— C1
L

Qp 2>
where L is Lipschitz constant of V,F.

4. {F(pr) = F(S(p;))} is a monotone decreasing sequence, and has a con-
vergent subsequence

po, = P
and p* satisfies the KKT condition.

S
S
X

S
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- MBB Beam

- Self-weight Compliance Minimization

Numerical
= Compliant Mechanism ReSU ltS

S
= -

S
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Discrete Spaces and Parameters

- Discrete Spaces
Qn=1{p" € L*(Q) : p"|r € Po(T) VT € Tp},
Qn={p € H'(Q): plr € P(T) VT € Tp}.
Vi ={u e [H' (D : ulr € [Py(T)? VT € Th}
- Parameters

e = 0.05/(2V3),
r(p) = po+ (1 —po)p’
po =107°,
cr =102,
= MFEM: Open source C++ FEM Library @ LLNL

I
S
X
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Self-weight Compliance Minimization

min U
R (gp, u)

st. V-(pC:e(u))=fFf inQ + B.Cs

/pZHML
Q

0<p<l.

V V V V

00 00Qq

LD

S0
S
N
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Compliant Mechanism

peL>(Q)

s.t. V- (pC:e(u)) = fi, inQ 4+ B.Cs

/ p=0|Q|,
Q

0<p<l.

— —
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Conclusion

- We derived Latent Variable Projected Mirror Descent Method

= The discrete density satisfies the bound constraint point-wisely even when
high-order approximation is used

- Adaptive step size with a heuristic initial guess outperform traditional methods
- Efficiency and robustness of the proposed algorithm has been shown numerically

= High-order approximation also can be employed while maintaining
bound-preserving property

S
S
X
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