XCIMER

MFEM Workshop 2024

Towards Predictive Modeling of the World's Most Powerful Fusion Laser at Xcimer Milan Holec

10/23/2024

This is laser fusion on the grid

300 MWe to 1 GWe

75 \$/MWh to 40 \$/MWh

\$1.5B TCC to \$3.5B TCC

Target Gain: ~200

Laser Efficiency: ~7%

EYEBROW

Team

Computing & Theory

- nonlinear optics
- plasma kinetics
- radhydro/MHD
- applied math
- HPC
- data science

Milan Holec

Daniel Treiman

David Schmidt

Jacob Milberger

Rahul Kumar

Warren Colomb

Ernesto Barraza-Valdez

IRIS digital twin / virtual beamline

Iris (greek goddess of the rainbow and the messenger of the Olympian gods) is Xcimer's simulation code to predict the seed profile throughout the Phoenix system.

Fourier propagation (FFT)

Coupled-wave-system SBS (FEM)

Zemax

(2

Xcimer Energy Proprietary and Confidential

Gas SBS model

$$\nabla^{2}\tilde{E} - \frac{n^{2}}{c^{2}} \left(\partial_{tt}^{2}\tilde{E} - \alpha_{E}\partial_{t}\nabla^{2}\tilde{E} \right) = \frac{\gamma_{e}}{4\pi\rho_{0}} \partial_{tt}^{2}(\tilde{\rho}\tilde{E}),$$

$$\nabla^{2}\tilde{\rho} - \frac{\gamma}{v_{s}^{2}} \left(\partial_{tt}^{2}\tilde{\rho} - \Gamma\partial_{t}\nabla^{2}\tilde{\rho} \right) = \frac{\gamma}{v_{s}^{2}8\pi} \nabla^{2} \left\langle \tilde{E}^{2} \right\rangle,$$

SIMULATION
Load hpc-cws-3d Library
import cws
Assign desired boundary conditions
config['pulseL_inflow'] = inflow_left_wave
config['pulseR_inflow'] = inflow_right_wave
config['cfl'] = 0.5
Run the simulation
result = cws.beam1d(**config)

dt = 1.55e-18, hx = 9.3e-08 Number of pulseR unknowns: 800 Number of pulseL unknowns: 800 Simulation of 3200 timesteps until 4.96e-15

- Nonlinear Maxwell equations
- Wave optics: diffraction, self-focusing, speckles, ...
- Three-wave nonlinear optics (electrostriction)
- 248 nm wavelength vs 100 m beamline (10⁹ dofs in 1D)
- High-frequency separation

Base model

$$\partial_{t}A_{0} + \frac{c}{n} \overset{\wedge}{\mathbf{k}}_{0} \cdot \nabla A_{0} - \frac{ic}{2nk_{0}} \nabla^{2}A_{0} = -R |A_{s}|^{2}A_{0},$$

$$\partial_{t}A_{s} + \frac{c}{n} \overset{\wedge}{\mathbf{k}}_{s} \cdot \nabla A_{s} - \frac{ic}{2nk_{s}} \nabla^{2}A_{s} = R^{*} |A_{0}|^{2}A_{s},$$
xec

Gas SBS model

$$\nabla^{2}\tilde{E} - \frac{n^{2}}{c^{2}} \left(\partial_{tt}^{2}\tilde{E} - \alpha_{E}\partial_{t}\nabla^{2}\tilde{E} \right) = \frac{\gamma_{e}}{4\pi\rho_{0}} \partial_{tt}^{2}(\tilde{\rho}\tilde{E}),$$

$$\nabla^{2}\tilde{\rho} - \frac{\gamma}{v_{s}^{2}} \left(\partial_{tt}^{2}\tilde{\rho} - \Gamma\partial_{t}\nabla^{2}\tilde{\rho} \right) = \frac{\gamma}{v_{s}^{2}8\pi} \nabla^{2} \left\langle \tilde{E}^{2} \right\rangle,$$

SINULATION
Load hpc-cws-3d Library
import cws
Assign desired boundary conditions
config['pulseL_inflow'] = inflow_left_wave
config['pulseR_inflow'] = inflow_right_wave
config['cfl'] = 0.5
Run the simulation
result = cws.beamld(**config)

dt = 1.55e-18, hx = 9.3e-08 Number of pulseR unknowns: 800 Number of pulseL unknowns: 800 Simulation of 3200 timesteps until 4.96e-15

- Nonlinear Maxwell equations
- Wave optics: diffraction, self-focusing, speckles, ...
- Three-wave nonlinear optics (electrostriction)
- 248 nm wavelength vs 100 m beamline (10⁹ dofs in 1D)
- High-frequency separation

Base model

$$\begin{split} \partial_t A_0 &+ \frac{c}{n} \dot{\mathbf{k}}_0 \cdot \nabla A_0 - \frac{ic}{2nk_0} \nabla^2 A_0 &= -R |A_s|^2 A_0, \\ \partial_t A_s &+ \frac{c}{n} \dot{\mathbf{k}}_s \cdot \nabla A_s - \frac{ic}{2nk_s} \nabla^2 A_s &= R^* |A_0|^2 A_s, \\ \text{XEC} \end{split}$$

Xcimer Energy Proprietary and Confidential

Simulation - SBS in 2D

Simulation - SBS in 3D

EYEBROW

XEC

Simulation - 1D/2D/3D physics validation

- Realistic Phoenix dimensions and geometry
- High-order Finite Element Method
- Based on MFEM open-source library
- Consistent seed amplification in 1D, 2D, and 3D
- 3D requires massively parallel simulations

Efficient design of Phoenix system leveraging super-fast 1D, geometrically consistent 2D, and complete 3D physics simulations!

Diffraction benchmark

$$\partial_{t}A_{0} + \frac{c}{n}\hat{\mathbf{k}}_{0} \cdot \nabla A_{0} - \frac{ic}{2nk_{0}}\nabla^{2}A_{0} = -R|A_{s}|^{2}A_{0}, \quad (10)$$

$$\partial_{t}A_{s} + \frac{c}{n}\hat{\mathbf{k}}_{s} \cdot \nabla A_{s} - \frac{ic}{2nk_{s}}\nabla^{2}A_{s} = R^{*}|A_{0}|^{2}A_{s}, \quad (11)$$

Benchmark: Gaussian beam in 2D and 3D rerr 10⁻³ vs analytical solution 4th order accurate scheme

Only 3 elements over the Gaussian feature 16x more accurate for dx/2

1.00

Phase transformations lens/phase-plate

Focusing element

- proof-of-concept of target irradiation
- improved accuracy by wedged mesh

X

• Serious high-frequency pollution!

$$u_g(x, y, z, t) = a_0(x, y, z, t) \exp\left(i\left(\mid \vec{k} \mid (z + f(x, y, z)) - \omega t\right)\right)$$

Xcimer Energy Proprietary and Confidential

Phase transformation 200m lens/phase-plate

Phase transformation 50m lens/phase-plate

Phase transformation

- 3.3e+0

Takeaway:

MFEM + smart coordinate transforms rock!

• Complex high-order DG (p=3), no-upwind, symplectic time

Accurate & robust Boltzmann physics General- S_N the fastest HPC framework

 $u_g(x, y, z, t) = a_0(x, y, z, t) \exp\left(i\left(\mid \vec{k} \mid (z + f(x, y, z)) - \omega t\right)\right)$

Efficient IFE design (user friendly direct ALE)

Lagrangian hydro

Eulerian hydro

