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The Rays-Effect Problem

Model Problem:

Ω⃗ · ∇f (X , Ω⃗, E ) = S(X , Ω⃗, E )

Figure: Snapshots showcasing the rays-effect in different numerical simulations.
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The Strategy: The Generalized SN methodology (GSN)
(Milan Holec)

General Coordinate System
Derive general change of coordinates at the continuous level aiming at mitigating ray
effects at the discrete level.

Multi-Dimensional DG Discretization
Develop a novel high-order matrix-free multi-dimensional DG method.
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General Change of Coordinates for the Momentum Mesh

Rotation of the Momentum Mesh:
∀X ∈ K , ∀ω ∈ [0, 2π], ∀µ ∈ [−1, 1]

Ω⃗(X , ω, µ, e) = R(ζ⃗(X ), ω0(X ))
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
Analytical ζ⃗(X ) ⇒ Analytical-GSN,
Numerical ζ⃗(X ) ⇒ Flux-GSN.
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Derivation of the Rotation Matrix

∇f = J−T ∇̃f , and assuming that ∂q
∂p̃ = 0, we get
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 (1)

Thus,
Ω⃗.∇f = ⃗̃Ω.J−T ∇̃f = J−1 ⃗̃Ω · ∇̃f (2)
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The mesh data-structures

Three mesh data-structures are currently supported:
Unstructured AMR curved mesh: using the mfem::Mesh class,
Structured mesh: e.g. Cartesian mesh (very computationally efficient and almost
zero memory footprint),
Cartesian product mesh: enable simple construction of high-dimension meshes by
representing a Cartesian product mesh between either structured and unstructured
meshes without any additional memory footprint.
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The high-dimension mesh interface

Mesh functions:
GetCell – K ∈ τh and F̂ ∈ ∂K : Returns an object representing a mesh cell,
GetFaceNeighborInfo – NF̂ (K ): Returns a neighboring cell info based on a
reference face.

Cell functions:
ComputePhysicalCoordinates – xq := F (x̂q): Compute the physical coordinates of
a point in reference space,
ComputeJacobian – J(x̂q): Compute the Jacobian matrix of the cell mapping at a
given point in reference space,
GetReferenceNormal – n̂: Returns the normal of a face in reference space.

−→ The simplicity of the mesh interface guarantees easy support for new mesh
data-structures and mesh data-structures existing in other libraries.
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Simple Cartesian product mesh example

× =⇒

=⇒ The 3D mesh has the same memory footprint as 2D + 1D (Not 2D × 1D).
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Cartesian Product Mesh for Phase Space

Tensor Product Meshes Advantages
Allow mixing structured and
unstructured meshes,
Low memory footprint,
Tensor product elements by
construction,
Block diagonal Jacobians.
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Discretization approach: Upwind Discontinuous Galerkin method

Find u ∈ Vh such that:

∀K ∈ τh, ∀vK ∈ VK ,

∫
K

uΩ⃗ · ∇vK −
∫

∂K
Ω⃗ · n⃗uupwindvK =

∫
K

f vK

Use matrix-free approach to mitigate the curse of dimensionality:

Memory Flops Arithmetic Intensity
Sparse-Matrix O(n(p + 1)2d) O(n(p + 1)2d) O(1)
Matrix-Free O(n(p + 1)d) O(n(p + 1)2d) O(pd)
Matrix-Free with
Sum Factorization

O(n(p + 1)d) O(nd(p + 1)d+1) O(dp)

⇒ Up to O((p + 1)d) speedup when compared to a Sparse-matrix approach.



LLNL-PRES-870722
11/31

Matrix-Free Algorithm for Advection
Volume contribution

1 Express integral in reference coordinates,
2 Use a quadrature rule to approximate the integral by a sum,
3 Transform the sum in a sequence of operations.

Volume contributions:

AK ≈
∑

q
ωqdet(J(x̂q))

(
û(x̂q) Ω⃗(xq)

)
· J−T (x̂q)∇̂v̂(x̂q) = GT DK B

where
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 , DK =

ω0det(J(x̂0))J−1(x̂0)Ω⃗(x0) 0

. . .

0 ωQ det(J(x̂Q ))J−1(x̂Q )Ω⃗(xQ )


Matrix-free operator:

vK = GT DK BuK
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Matrix-Free Algorithm for Advection
Face contribution

aface
K (u, v) =

∑
F̂∈∂K̂

∑
q

ωq|J(x̂q)| upwind
(
a(xq), J−T (x̂q)n̂, û(x̂q)

)
· [[v̂ ]](x̂q)

Express the face operator as a sequence of operations:

vK =
∑

F̂∈∂K

BT
F̂ DK ,F̂

(
BF̂ uK , B̃F̂ PK ,F̂ uNF̂ (K)

)
where

DK ,F̂ (uK (x̂q), uNF̂ (K)(x̂q)) = ωq|J(x̂q)|upwind
(
a(xq), J−T (x̂q)n̂, uK (x̂q), uNF̂ (K)(x̂q)

)
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Reducing the FLOPs: The sum factorization trick

On tensor product finite elements, the B operator can be computed as:

vk1...k6 = BIK uI =
∑

i1,...,i6
ui1...i6φi1(xk1) . . . φi6(xk6)︸ ︷︷ ︸

O(p12)=O(p2d )

=
∑
i6

φi6(xk6)
(

. . .
(∑

i1
φi1(xk1)ui1...i6︸ ︷︷ ︸

O(p7)=O(pd+1)

))

= B̃i6k6 ⊗ . . . ⊗ B̃i1k1ui1...i6
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Roofline Model for Operator Evaluation

Benchmark Problem

v = Au

Theoretical data movements for the advection operator
Dimension 3D 6D
Polynomial order 0 1 2 3 0 1 2 3
Number of dofs per element 1 8 27 64 1 64 729 4096
SpMV – Bytes per dof 104 260 560 1076 176 980 9740 52244
PA – Bytes per dof 784 259 158.2 119.1 21520 2749.7 1094.8 638.6
MF – Analytical mesh – Bytes per dof 16 16 16 16 16 16 16 16
MF – Linear space mesh – Bytes per dof 208 40 23 19 208 19 16.3 16.1
MF – Quadratic space mesh – Bytes per dof 664 97 40 26.1 664 26.1 16.9 16.2

SpMV: Sparse-Matrix vector product, PA: Partial Assembly operator application, MF: Fully Matrix-Free operator application
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Performance Benchmark: Mass Operator
CPU Machine: Quartz (OpenMP - 76.8GB/s)
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SpMV: Sparse-Matrix vector product, PA: Partial Assembly operator application, MF: Fully Matrix-Free operator application
p is the polynomial order, q is the number of quadrature points per dimension.
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Performance Benchmark: Advection Operator
CPU Machine: Quartz (OpenMP - 76.8GB/s)
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SpMV: Sparse-Matrix vector product, PA: Partial Assembly operator application, MF: Fully Matrix-Free operator application
p is the polynomial order, q is the number of quadrature points per dimension.
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Early GPU performance results (Amit Rotem)

CPU Machine: Quartz (OpenMP - 76.8GB/s), GPU Machine: Lassen (V100 - 900GB/s)
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Main Takeaway:
Matrix-Free mass operator throughput is higher in 6D than 3D on GPU!
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Rays-Effect Benchmark Problem I

Source Term:
– Inflow function: Sin(x , y , ω) = 2,
– Outflow only.

(a) Spatial Mesh (b) Standard vs Cylindrical GSN
Figure: 2D Cartesian Space + 1D Polar Angle Problem.
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Standard High-Order DG on Benchmark Problem I

Scalar flux:

F (X ) =
∫

u(X , ω)dω

(a) Zeroth Order DG (b) First Order DG (c) Second Order DG

Figure: High order DG methods do not solve the rays-effect.
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Comparing Standard with Cylindrical GSN
Benchmark Problem I: First Order
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Rays-Effect Benchmark Problem II

Source Term:
– Inflow function: Sin(x , y , ω) = (x2 + y2)4,
– Outflow only.

(a) Spatial Mesh (b) Standard vs Cylindrical GSN
Figure: 2D Space + 1D Angle Problem.
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Comparing ”Standard” with ”Polar” Coordinates
Benchmark Problem II: Second Order
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Comparing Standard with Cylindrical GSN
Benchmark Problem II: impact of the polynomial order p with nΩ⃗ = 16
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Rays-Effect Benchmark Problem III

Source Term:
– Inflow function: Sin(r , z , ω, ϕ) = 2,
– Outflow only.

(a) Spatial Mesh (b) Cylindrical vs Spherical GSN
Figure: 2D Space + 2D Angle Problem.
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Benchmark III: Perfect Hohlraum in RZ spatial coordinates
Comparing ”cylindrical” GSN with ”spherical” GSN
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Benchmark III: Perfect Hohlraum in RZ spatial coordinates
Comparing zeroth order in angle with high order in angle using spherical GSN

pω = 0

pω = p
p = 1 p = 2 p = 3
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Beyond Analytical-GSN: Flux-GSN

Net flux (First Moment):

F⃗ (X ) =
∫

ω
p(X , ω)u(X , ω)dω

Flux-GSN algorithm:
1 Compute initial solution using analytical-GSN
2 Compute net flux
3 Fixed-point iteration until convergence

1 Compute solution using flux-GSN with net flux: ζ⃗(X ) = F⃗ (X )
2 Compute net flux
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Rays-Effect Benchmark Problem IV

Source Term:
– Inflow function: Sin(x , y , ω) = 4 − x ,
– Outflow only.

(a) Spatial Mesh (b) Polar Change of Coordinates
Figure: 2D Space + 1D Angle Problem.
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Flux-GSN example
Benchmark Problem IV

Initial solution Iteration 0 Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8

⇒ Converges to 1e−6 in 19 iterations.
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Conclusion

Main Takeaways
The Analytical-GSN and Flux-GSN methodologies can efficiently mitigate the
rays-effect at low computational cost.
Matrix-free algorithms mitigates efficiently the computational cost of
high-dimensional simulation.
The higher the dimension the higher the throughput on GPU architectures.
Tensor product meshes enable easy construction of arbitrary dimension meshes.

Future Work
Use other quantities than net flux to inform flux-GSN’s coordinate system.
Improvement of matrix-free solvers and preconditioners.
Extension to non-conforming meshes (AMR).
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