
LLNL-PRES-870722
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

A Matrix-Free High-Dimensional DG Approach for
Mitigating the Rays-Effect in Phase-Space Advection.
MFEM community workshop 2024 – Livermore, USA

Yohann Dudouit Veselin Dobrev Terry Haut Milan Holec John Loffeld Jan Nikl Lee Ricketson Amit Rotem

October 22nd–24th 2024

LLNL-PRES-870722
2/31

The Rays-Effect Problem

Model Problem:

Ω⃗ · ∇f (X , Ω⃗, E) = S(X , Ω⃗, E)

Figure: Snapshots showcasing the rays-effect in different numerical simulations.

LLNL-PRES-870722
3/31

The Strategy: The Generalized SN methodology (GSN)
(Milan Holec)

General Coordinate System
Derive general change of coordinates at the continuous level aiming at mitigating ray
effects at the discrete level.

Multi-Dimensional DG Discretization
Develop a novel high-order matrix-free multi-dimensional DG method.

LLNL-PRES-870722
4/31

General Change of Coordinates for the Momentum Mesh

Rotation of the Momentum Mesh:
∀X ∈ K , ∀ω ∈ [0, 2π], ∀µ ∈ [−1, 1]

Ω⃗(X , ω, µ, e) = R(ζ⃗(X), ω0(X))



cos(ω)
√

1 − µ2

sin(ω)
√

1 − µ2

µ
0
0
0


Analytical ζ⃗(X) ⇒ Analytical-GSN,
Numerical ζ⃗(X) ⇒ Flux-GSN.

LLNL-PRES-870722
5/31

Derivation of the Rotation Matrix

∇f = J−T ∇̃f , and assuming that ∂q
∂p̃ = 0, we get

J−1 =
(

∂q
∂q̃

∂q
∂p̃

∂p
∂q̃

∂p
∂p̃

)−1

=
(

∂q
∂q̃ 0
∂p
∂q̃

∂p
∂p̃

)−1

=

 ∂q
∂q̃

−1 0
−∂p

∂p̃
−1 ∂p

∂q̃
∂q
∂q̃

−1 ∂p
∂p̃

−1

 (1)

Thus,
Ω⃗.∇f = ⃗̃Ω.J−T ∇̃f = J−1 ⃗̃Ω · ∇̃f (2)

LLNL-PRES-870722
6/31

The mesh data-structures

Three mesh data-structures are currently supported:
Unstructured AMR curved mesh: using the mfem::Mesh class,
Structured mesh: e.g. Cartesian mesh (very computationally efficient and almost
zero memory footprint),
Cartesian product mesh: enable simple construction of high-dimension meshes by
representing a Cartesian product mesh between either structured and unstructured
meshes without any additional memory footprint.

LLNL-PRES-870722
7/31

The high-dimension mesh interface

Mesh functions:
GetCell – K ∈ τh and F̂ ∈ ∂K : Returns an object representing a mesh cell,
GetFaceNeighborInfo – NF̂ (K): Returns a neighboring cell info based on a
reference face.

Cell functions:
ComputePhysicalCoordinates – xq := F (x̂q): Compute the physical coordinates of
a point in reference space,
ComputeJacobian – J(x̂q): Compute the Jacobian matrix of the cell mapping at a
given point in reference space,
GetReferenceNormal – n̂: Returns the normal of a face in reference space.

−→ The simplicity of the mesh interface guarantees easy support for new mesh
data-structures and mesh data-structures existing in other libraries.

LLNL-PRES-870722
8/31

Simple Cartesian product mesh example

× =⇒

=⇒ The 3D mesh has the same memory footprint as 2D + 1D (Not 2D × 1D).

LLNL-PRES-870722
9/31

Cartesian Product Mesh for Phase Space

Tensor Product Meshes Advantages
Allow mixing structured and
unstructured meshes,
Low memory footprint,
Tensor product elements by
construction,
Block diagonal Jacobians.

LLNL-PRES-870722
10/31

Discretization approach: Upwind Discontinuous Galerkin method

Find u ∈ Vh such that:

∀K ∈ τh, ∀vK ∈ VK ,

∫
K

uΩ⃗ · ∇vK −
∫

∂K
Ω⃗ · n⃗uupwindvK =

∫
K

f vK

Use matrix-free approach to mitigate the curse of dimensionality:

Memory Flops Arithmetic Intensity
Sparse-Matrix O(n(p + 1)2d) O(n(p + 1)2d) O(1)
Matrix-Free O(n(p + 1)d) O(n(p + 1)2d) O(pd)
Matrix-Free with
Sum Factorization

O(n(p + 1)d) O(nd(p + 1)d+1) O(dp)

⇒ Up to O((p + 1)d) speedup when compared to a Sparse-matrix approach.

LLNL-PRES-870722
11/31

Matrix-Free Algorithm for Advection
Volume contribution

1 Express integral in reference coordinates,
2 Use a quadrature rule to approximate the integral by a sum,
3 Transform the sum in a sequence of operations.

Volume contributions:

AK ≈
∑

q
ωqdet(J(x̂q))

(
û(x̂q) Ω⃗(xq)

)
· J−T (x̂q)∇̂v̂(x̂q) = GT DK B

where

B =

 φ̂0(x̂0) . . . φ̂N (x̂0)

.

.

.
. . .

.

.

.

φ̂0(x̂Q) . . . φ̂N (x̂Q)

 , G =

∇̂φ̂0(x̂0) . . . ∇̂φ̂N (x̂0)

.

.

.
. . .

.

.

.

∇̂φ̂0(x̂Q) . . . ∇̂φ̂N (x̂Q)

 , DK =

ω0det(J(x̂0))J−1(x̂0)Ω⃗(x0) 0

. . .

0 ωQ det(J(x̂Q))J−1(x̂Q)Ω⃗(xQ)


Matrix-free operator:

vK = GT DK BuK

LLNL-PRES-870722
12/31

Matrix-Free Algorithm for Advection
Face contribution

aface
K (u, v) =

∑
F̂∈∂K̂

∑
q

ωq|J(x̂q)| upwind
(
a(xq), J−T (x̂q)n̂, û(x̂q)

)
· [[v̂]](x̂q)

Express the face operator as a sequence of operations:

vK =
∑

F̂∈∂K

BT
F̂ DK ,F̂

(
BF̂ uK , B̃F̂ PK ,F̂ uNF̂ (K)

)
where

DK ,F̂ (uK (x̂q), uNF̂ (K)(x̂q)) = ωq|J(x̂q)|upwind
(
a(xq), J−T (x̂q)n̂, uK (x̂q), uNF̂ (K)(x̂q)

)

LLNL-PRES-870722
13/31

Reducing the FLOPs: The sum factorization trick

On tensor product finite elements, the B operator can be computed as:

vk1...k6 = BIK uI =
∑

i1,...,i6
ui1...i6φi1(xk1) . . . φi6(xk6)︸ ︷︷ ︸

O(p12)=O(p2d)

=
∑
i6

φi6(xk6)
(

. . .
(∑

i1
φi1(xk1)ui1...i6︸ ︷︷ ︸

O(p7)=O(pd+1)

))

= B̃i6k6 ⊗ . . . ⊗ B̃i1k1ui1...i6

LLNL-PRES-870722
14/31

Roofline Model for Operator Evaluation

Benchmark Problem

v = Au

Theoretical data movements for the advection operator
Dimension 3D 6D
Polynomial order 0 1 2 3 0 1 2 3
Number of dofs per element 1 8 27 64 1 64 729 4096
SpMV – Bytes per dof 104 260 560 1076 176 980 9740 52244
PA – Bytes per dof 784 259 158.2 119.1 21520 2749.7 1094.8 638.6
MF – Analytical mesh – Bytes per dof 16 16 16 16 16 16 16 16
MF – Linear space mesh – Bytes per dof 208 40 23 19 208 19 16.3 16.1
MF – Quadratic space mesh – Bytes per dof 664 97 40 26.1 664 26.1 16.9 16.2

SpMV: Sparse-Matrix vector product, PA: Partial Assembly operator application, MF: Fully Matrix-Free operator application

LLNL-PRES-870722
15/31

Performance Benchmark: Mass Operator
CPU Machine: Quartz (OpenMP - 76.8GB/s)

1 2 3106

107

108

109

1010

Polynomial Order p

Th
ro

ug
hp

ut
[D

oF
/s

]

3D Mass Operator Application Performance

1 2 3106

107

108

109

1010

Polynomial Order p
Th

ro
ug

hp
ut

[D
oF

/s
]

6D Mass Operator Application Performance

Theoretical Max for SpMV
Theoretical Max for PA
Theoretical Max for MF
Measured Max for MF

Measured MF for q = p
Measured MF for q = p + 1
Measured MF for q = p + 2

SpMV: Sparse-Matrix vector product, PA: Partial Assembly operator application, MF: Fully Matrix-Free operator application
p is the polynomial order, q is the number of quadrature points per dimension.

LLNL-PRES-870722
16/31

Performance Benchmark: Advection Operator
CPU Machine: Quartz (OpenMP - 76.8GB/s)

1 2 3
106

107

108

109

1010

Polynomial Order p

Th
ro

ug
hp

ut
[D

oF
/s

]

3D Advection Operator Application Performance

1 2 3
106

107

108

109

1010

Polynomial Order
Th

ro
ug

hp
ut

[D
oF

/s
]

6D Advection Operator Application Performance

Theoretical Max for SpMV
Theoretical Max for PA
Theoretical Max for MF
Measured Max for MF

Measured MF for q = p
Measured MF for q = p + 1
Measured MF for q = p + 2

SpMV: Sparse-Matrix vector product, PA: Partial Assembly operator application, MF: Fully Matrix-Free operator application
p is the polynomial order, q is the number of quadrature points per dimension.

LLNL-PRES-870722
17/31

Early GPU performance results (Amit Rotem)

CPU Machine: Quartz (OpenMP - 76.8GB/s), GPU Machine: Lassen (V100 - 900GB/s)

1 2 3107

108

109

1010

1011

Polynomial Order p

Th
ro

ug
hp

ut
[D

oF
/s

]
3D Mass Operator Application Performance

CPU Max for MF
CPU MF for q = p + 1

GPU Max for MF
GPU MF for q = p + 1

1 2 3107

108

109

1010

1011

Polynomial Order p

Th
ro

ug
hp

ut
[D

oF
/s

]

6D Mass Operator Application Performance

CPU Max for MF
CPU MF for q = p + 1

GPU Max for MF
GPU MF for q = p + 1

Main Takeaway:
Matrix-Free mass operator throughput is higher in 6D than 3D on GPU!

LLNL-PRES-870722
18/31

Rays-Effect Benchmark Problem I

Source Term:
– Inflow function: Sin(x , y , ω) = 2,
– Outflow only.

(a) Spatial Mesh (b) Standard vs Cylindrical GSN
Figure: 2D Cartesian Space + 1D Polar Angle Problem.

LLNL-PRES-870722
19/31

Standard High-Order DG on Benchmark Problem I

Scalar flux:

F (X) =
∫

u(X , ω)dω

(a) Zeroth Order DG (b) First Order DG (c) Second Order DG

Figure: High order DG methods do not solve the rays-effect.

LLNL-PRES-870722
20/31

Comparing Standard with Cylindrical GSN
Benchmark Problem I: First Order

St
an

da
rd

GS
N

Cy
lin

dr
ica

lG
SN

nΩ⃗ = 4 nΩ⃗ = 8 nΩ⃗ = 16 nΩ⃗ = 32 nΩ⃗ = 64

LLNL-PRES-870722
21/31

Rays-Effect Benchmark Problem II

Source Term:
– Inflow function: Sin(x , y , ω) = (x2 + y2)4,
– Outflow only.

(a) Spatial Mesh (b) Standard vs Cylindrical GSN
Figure: 2D Space + 1D Angle Problem.

LLNL-PRES-870722
22/31

Comparing ”Standard” with ”Polar” Coordinates
Benchmark Problem II: Second Order

St
an

da
rd

GS
N

Cy
lin

dr
ica

lG
SN

nΩ⃗ = 8 nΩ⃗ = 16 nΩ⃗ = 32 nΩ⃗ = 64

LLNL-PRES-870722
23/31

Comparing Standard with Cylindrical GSN
Benchmark Problem II: impact of the polynomial order p with nΩ⃗ = 16

St
an

da
rd

GS
N

Cy
lin

dr
ica

lG
SN

p = 1, pω = 0 p = 2 p = 3 p = 4

LLNL-PRES-870722
24/31

Rays-Effect Benchmark Problem III

Source Term:
– Inflow function: Sin(r , z , ω, ϕ) = 2,
– Outflow only.

(a) Spatial Mesh (b) Cylindrical vs Spherical GSN
Figure: 2D Space + 2D Angle Problem.

LLNL-PRES-870722
25/31

Benchmark III: Perfect Hohlraum in RZ spatial coordinates
Comparing ”cylindrical” GSN with ”spherical” GSN

Cy
lin

dr
ica

lG
SN

Sp
he

ric
al

GS
N

p = 1 p = 2 p = 3

LLNL-PRES-870722
26/31

Benchmark III: Perfect Hohlraum in RZ spatial coordinates
Comparing zeroth order in angle with high order in angle using spherical GSN

pω = 0

pω = p
p = 1 p = 2 p = 3

LLNL-PRES-870722
27/31

Beyond Analytical-GSN: Flux-GSN

Net flux (First Moment):

F⃗ (X) =
∫

ω
p(X , ω)u(X , ω)dω

Flux-GSN algorithm:
1 Compute initial solution using analytical-GSN
2 Compute net flux
3 Fixed-point iteration until convergence

1 Compute solution using flux-GSN with net flux: ζ⃗(X) = F⃗ (X)
2 Compute net flux

LLNL-PRES-870722
28/31

Rays-Effect Benchmark Problem IV

Source Term:
– Inflow function: Sin(x , y , ω) = 4 − x ,
– Outflow only.

(a) Spatial Mesh (b) Polar Change of Coordinates
Figure: 2D Space + 1D Angle Problem.

LLNL-PRES-870722
29/31

Flux-GSN example
Benchmark Problem IV

Initial solution Iteration 0 Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 5 Iteration 6 Iteration 7 Iteration 8

⇒ Converges to 1e−6 in 19 iterations.

LLNL-PRES-870722
30/31

Conclusion

Main Takeaways
The Analytical-GSN and Flux-GSN methodologies can efficiently mitigate the
rays-effect at low computational cost.
Matrix-free algorithms mitigates efficiently the computational cost of
high-dimensional simulation.
The higher the dimension the higher the throughput on GPU architectures.
Tensor product meshes enable easy construction of arbitrary dimension meshes.

Future Work
Use other quantities than net flux to inform flux-GSN’s coordinate system.
Improvement of matrix-free solvers and preconditioners.
Extension to non-conforming meshes (AMR).

Disclaimer

Disclaimer: This document was prepared as an account of work sponsor by an agency of the
United States government, Neither the United States government or Lawrence Livermore
Nation Security, LLC, nor any of their employees make any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represent that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United States government or
Lawrence Livermore National Security, LLC. The views and options of authors expressed herein
do not necessarily state or reflect those of the United States government or Lawrence Livermore
Nation Security, LLC, and shall not be used for advertising or product endorsement purposes.

