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Cascadia Subduction Zone
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GEBCO bathymetry data of the Cascadia Subduction Zone (CSZ) with ~ 250m resolution.
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https://www.gebco.net/data_and_products/gridded_bathymetry_data/

Cascadia Subduction Zone
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The shaded area illustrates the “locked” part of the interface between the North American and subducting plate.
The red line marks the seaward edge where the subducting plates begin their descent beneath the North American Plate.
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Evidence for 1700 Cascadia Megathrust M9.0 Earthquake

3. A

Neskowin Ghost Forest Alternating layers in pit, Tofino, BC (Clague, 97)

@ Cascadia subduction zone has seen major ruptures in 1700 AD, 1310 AD, 810 AD, 400
AD, 170 BC and 600 BC

@ Current estimate: 37% probability of M8.2+ event within 50 years; 10-15% probability
that entire Cascadia subduction zone will rupture with an M9+ event
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Cascadia Subduction Zone: Proposed Sensor Network!
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Inversion from Near-Field Pressure Data

Current forecasting models rely on shallow water equations for tsunami propagation
@ Efficient computation
@ Works well in the far-field (observing hydrostatic pressure changes)
@ But does not make use of near-field pressure transients from hydroacoustic waves
Cascadia subduction zone digital twin:

@ Predict tsunami propagation by inversion of near-field pressure data recorded during a
megathrust rupture via inference of seafloor velocity

@ Employ high fidelity model of acoustic/gravity wave propagation—solution and inverse
operators do not admit low rank approximation (Kolmogorov n-width problem)

@ Quantify uncertainty in inversion & prediction via Bayesian inference
@ Solve inverse problem in real time (order of seconds) to provide early warning
Advantages: Earlier & more accurate forecasting

Challenges: Billion-parameter inverse problem governed by billions DOF forward model

MFEM Community Workshop — Sep 10-11, 2025
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Outline

© Forward Model
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Acoustic—Gravity Model

@ Mixed formulation for pressure and velocity unknowns:?

p%—i—Vp:O in Qx (0,7)
1 0p L .
EE“FV'U—O mQx(O,T)

@ Boundary conditions:
» ODE-type BC (sea surface):
p=pgn, On/ot=1i-ii on Tsuface X (0,T)
» Seafloor velocity (boundary source):
—0b/ot =1u -7 on Tpottom X (0,T)
» First-order absorbing BC (outgoing waves):
w-n=p/pc on Lapsorb X (0,T), c=+/K/p
@ Initial conditions (homogeneous)

@ Implemented in MFEM with high-order finite elements and RK4 time-stepping

2] otto and Dunham, 2015
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Weak Formulation

@ A weak form of the governing equations in the space-time domain is formally derived by
multiplying with test functions (7,v) and integrating-by-parts the second equation; the ODE
boundary condition is imposed weakly.

Findield,peV,
such that

Tr1 ou
//[p—«?-l—Vp'?}dfdt =0, TEU,
oJal Ot
T 1 0p
// [?EU—U Vv} dzdt +
1
// —@vdxdt—k// —pvdxdt // —vdxdt veY.
suvface pg absorb p 1_‘boﬂ:om

@ Function spaces: U = (L?(2))? x L?(0,T), V = H'(Q) x L?(0,T) (+ homogeneous ICs)

@ Surface gravity wave height 7 recovered from surface BCs
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Time-Stepping Operator

@ Time-stepping operator:
fus o] =M~ (~Aupl] +[fg]]),

where [u p]lT and [f g}zT are respectively the state and right-hand-side (RHS) vectors at time
instance 4, and [us ps| is the state increment used by RK4.

@ The mass matrix M and stiffness matrix A are discretizations of the block operators M and A

defined by: o o
<M [ZHZD - {(puo, 7 (K~'p,v) + <?pg)‘1p7v>ms]

(A [Z] ’ H) . [—(ﬁ,ow <<pc§Yfé,?>aﬂj ’

where @, 7 € (L?(Q))? and p,v € H*(Q); (-, ) denotes the (component-wise) L?(Q) inner
product, and (-, -)aq is the L?(9S2) inner product over (part of) the boundary 99).
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Convergence of Modal Solutions (2D)

Let k,, denote the wavenumber and w the angular frequency of the wave. The homogeneous solutions
satisfying the state system with source 9b(x,t)/0t = 0 and prescribed frequency w are given by:3

p(z,y,t) = sin(kyz) sin(wt) (sinh(mny) + i}izn cosh(nny)) )

k . K
Uy (z,y,t) = ﬁ cos(ky ) cos(wt) (smh(/@ny) + ‘(i)—; cosh(nny)> ,
K . Rp o .
uy(z,y,t) = pZZZ sin(k,z) cos(wt) (cosh(mny) + i}—; smh(nny)) ,
KnPo . .
t) = k t).
n(z,t) ol sin(kyx) sin(wt)

Each solution (mode) must satisfy the dispersion relation

w? = gk, tanh(k, H), where k, = /K2 + (w/c)?.

Given frequency w, there are infinitely many k,, € C, n =0,1,2,..., satisfying the dispersion relation:
@ Surface-gravity wave mode: ko > 0 (ko > 0)
@ Propagating acoustic-gravity modes: k, > 0 (|kn| <w/c), n=1,..., K, |K =wH/(mc) + 1/2]
@ Decaying (evanescent) acoustic modes: k2 < 0 (|k,| > w/c), n =K +1,...

3Lotto and Dunham, 2015
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Convergence of Modal Solutions (cont.)

Surface gravity wave mode
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(0,L) x (—H,0), L =100 km, H = 5000 m. Numerical solutions to the modes are computed by prescribing

o Vph,N||2)1/2

boundary data p = pgn on I's and sound-soft BC p = 0 on I'; for wavenumber k,, = nmw/L,n = 1.
5using 2nd-order accurate Crank—Nicolson time-stepping.
Henneking, Venkat, Dobrev, Camier, Kolev, Fernando, Gabriel, & Ghattas

MFEM Community Workshop — Sep 10-11, 2025

h/2.

13/33



3D Mesh Must Respect Bathymetry
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Cascadia Subduction Zone Margin-Wide Rupture Scenario

Time: 100 s Time: 100 s
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Rendering of data obtained from 3D Cascadia dynamic rupture simulation (Glehman et al., 2024).
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https://drive.google.com/file/d/1_SS8jVeWoXHwjQwRBgeWNw431xGSs1Yu/view

Cascadia Subduction Zone Margin-Wide Rupture Scenario
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Rendering of the sea bottom pressure transients and the surface wave heights obtained from
coupled acoustic—gravity PDE forward model.
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https://drive.google.com/file/d/1Fh5lrkAX8RELylQbTM6tfTi6I4ay9DGa/view
https://drive.google.com/file/d/1Fh5lrkAX8RELylQbTM6tfTi6I4ay9DGa/view
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© Inference and Prediction Model
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Inference and Prediction Model

Inverse problem:

Given pressure recordings from sensors on the seafloor,
infer the spatiotemporal seafloor motion in the subduction zone

Forecasting problem:

Given inferred spatiotemporal seafloor motion,
forward predict tsunami wave heights at specified coastal locations

Henneking, Venkat, Dobrev, Camier, Kolev, Fernando, Gabriel, & Ghattas MFEM Community Workshop — Sep 10-11, 2025



Bayesian Inference Model

@ Parameters m: spatiotemporal seafloor motion
@ Data d: spatiotemporal pointwise pressure observations

@ Parameter-to-observable map F :m +—d
» Solve forward PDE using given parameter field as boundary condition
» Extract pressure values at sensor locations
@ Qol ¢: spatiotemporal pointwise surface wave height predictions
@ Parameter-to-Qol map Fy : m — g
o Bayes' rule: dppost/ dptprior ¢ Tiike (d|m)
. . _9
e Gaussian prior: m ~ N (mprior; Lprior)s  Tprior = (@11 — aaAgp)
o Likelihood: miike(d|m) ox exp (—%H]—"m —d|]A_, )

@ Observations: d =Fm +v, v~ N(0,Thoise)
@ Goal: Characterize the posteriors fipost = N (Mmap; Tpost) and pipost(q) = N (gmap, Tpost(q))
noise prior

-1
> Lhost 1= (}' Tl 4Tl ) (inverse of the Hessian of the negative log-posterior)

> Mmap = Lpost (.F*Fn;ilsed + F;riirmp,;or) = Need a solver to rapidly compute Hessian action

Henneking, Venkat, Dobrev, Camier, Kolev, Fernando, Gabriel, & Ghattas MFEM Community Workshop — Sep 10-11, 2025



Inverse Problem Governed by Autonomous Dynamical System

Autonomous dynamical system:

@ Evolution does not depend explicitly on independent variable (e.g. time)

@ Here: the mapping m(Z,t + 7) — d(Z,t + 7) is the same as m(Z,t) — d(Z,t)

The discrete p2o and p2q maps F and F, are shift-invariant with respect to time-stepping:

Cd
ds
ds

L dy,

L Fna

0

Fn,—11

0

Fo1

Fu

L My, |

i

d; .= d(f, ti) € RNa
m; := m(7,t;) € RVn

= F is block Toeplitz (N; x N; blocks, F;; € RNa*Nm N, < N,,).
@ Obtain F by only N; (number of sensors) adjoint solves (last block column of F*)
@ Compactly store F: O(N,,,NyNV;)
e Efficiently apply F and F* matvecs in Fourier space: O(N,,,NyN;log Ny)

Henneking, Venkat, Dobrev, Camier, Kolev, Fernando, Gabriel, & Ghattas
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Real-Time Inference and Prediction Framework

@ Now we have a fast algorithm for applying F,F* and Fy, F to vectors.
How can we use this to enable real-time inference and prediction?

@ Split inversion into Offline and Online phases:®
» Phase 1 (Offline): Construct p2o and p2q maps from adjoint PDE solves
Ng + Ny adjoint PDE solves requires a scalable solver and supercomputing!

» Phase 2 (Offline): Compute compact representation of Ij,os
Apply Woodbury formula to reformulate inverse Hessian in the data space.

» Phase 3 (Offline): Compute Qol uncertainties and data-to-Qol map

Exploit autonomous structure of p2o map to enable FFT-based Hessian matvecs.’
> Phase 4 (Online): Compute parameter and Qol MAP points in real time

@ Offline/Online decomposition allows us to exactly solve inference and prediction problems
in O(seconds) using the high-fidelity model
> No surrogates or reduced-order models necessary

6H., Venkat, Ghattas. "Goal-oriented real-time Bayesian inference for linear autonomous dynamical systems with
application to digital twins for tsunami early warning,” arXiv:2501.14911 (2025)

"Venkat, Fernando, H., Ghattas. “Fast and scalable FFT-based GPU-accelerated algorithms for block-triangular
Toeplitz matrices with application to linear inverse problems governed by autonomous dynamical systems,” To Appear in
SIAM Journal on Scientific Computing (2025)
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El Capitan Supercomputer at Lawrence Livermore National Laboratory

awrence Livarmore
ational Laboratory

-« ELLBAPIAN

ADVAN mslMULn ION & CON PUTING

| e = / 5

El Capitan:

#1 Supercomputer (June 2025 TOP500)
11,136 nodes with 44,544 AMD MI300A — P (L !
System peak: 2.75 ExaFLOP/s (dp) e = 1,
Sustained performance: 1.74 ExaFLOP /s (dp)
System memory: 5.70 PB

Vendor: HPE

////////

Henneking, Venkat, Dobrev, Camier, Kolev, Fernando, Gabriel, & Ghattas
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Alps and Perlmutter Supercomputers
Alps: o R e e =5
@ #8 Supercomputer (6/25 TOP500) e ane=d
@ 2,688 nodes with 10,752 NVIDIA GH200 -
@ System peak: 574.8 PetaFLOP /s (dp) =

o Sustained: 434.9 PetaFLOP /s (dp) ‘ %
@ Vendor: HPE

L
]
1IN |

(CSCS)

Perlmutter:

@ #25 Supercomputer (6/25 TOP500)
@ 1,536 nodes with 6,144 NVIDIA A100
@ System peak: 113.0 PetaFLOP /s (dp)
@ Sustained: 79.2 PetaFLOP/s (dp)

@ Vendor: HPE

Perlmutter at the National Energy Research
Scientific Computing Center (NERSC)
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Scalability Setup (Adjoint PDE Solve)

Scalability setup on the El Capitan, Alps and Perlmutter supercomputers

Weak scaling  Strong scaling

Nodes  GPUs Processor grid Mesh elements Elements/GPU

85 340 5 x 17 x 4 1,693,450,240 4,980,736
10,880 43,520 80 x 136 x 4 216,761,630,720 38,912
36 144 2 x 18 x 4 566,231,040 3,932,160
2,304 9,216 16 x 144 x 4  36,238,786,560 61,440
47 188 1 x 47 x 4 295,698,432 1,572,864
1,504 6,016 8 x 188 x 4 9,462,349,824 49,152
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Adjoint PDE Scaling Results (MFEM)

Strong scaling of the acoustic—gravity model on the E/ Capitan, Alps, and Perlmutter supercomputers
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Adjoint PDE Scaling Results (MFEM)

Weak scaling of the acoustic—gravity model on the E/ Capitan, Alps, and Perlmutter supercomputers
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Outline

o Application to Cascadia Subduction Zone

Henneking, Venkat, Dobrev, Camier, Kolev, Fernando, Gabriel, & Ghattas MFEM Community Workshop — Sep 10-11



Cascadia Subduction Zone: Margin-Wide Rupture Inversion

Inverse problem configuration:

@ Spatial resolution: 300 m
@ Simulation time: T'=420 s
Temporal parameter, data, and Qol dimension: N; = 420 (1 Hz frequency)

@ Spatial parameter dimension: N, = 2416530

@ Number of sensors: Nz = 600

@ Number of Qol spatial locations: Ny, = 21

@ Total parameter dimension: N,,N; = 1014942 600

@ Total data dimension: NgN; = 252000

@ Total Qol dimension: N,N; = 8820

@ Total state dimension: 3744141189 spatial DOFs, with 336 000 RK4 timesteps
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Real-Time Bayesian Inference Framework: Workflow

L 2 el mEEmEmEmEmEmEmEmEmEmEEmEm-- 1
1 Phase 1 Phase 2 Phase 3 B Phase 4 1
1 ! 1
1 Precompute p2o map Perform prior solves Compute Qol covariance :l Given observations d°", 1
: e adjEC‘)il:'ItnF’lD'_E) ‘g;luti - N solves — G* :=T i, F* Thost(q) = FoTpost By |: infer parameters :
. — _ -1 qob
! per sensor location Ny solves = Gy :=Tprior By =F,(I-G*K'F) Gy Misp = LoostF* T d |y
! Precompute p2q map Form data space Hessian Form data-to-Qol map and predict Qol !
! |I obs !
! j‘q':trgo? q, i K := hise + FG* Q:d—q ! Amap = Fyminay = Qd 1
1 one adjoin solution 1. -l — sp-1 1 . ) 1
1 per Qol forecast location (FP°S° =Tprior —G"K G) Q = Fylposi F T s, :. in real time .
ks —— - l
1 IAE HEEsEE aco‘ustlc—graVIty [ Fast Hessian matvecs with FFT-based algorithm for block lower-triangular Toeplitz matrices F and G ] 1
. wave propagation solver .
R R Offline = === === === - e - e - - - R Online - - - - - -

The inverse solution is decomposed into precomputation (offline) phases that are executed just once,
and a real-time (online) phase of parameter inference and Qol prediction that is executed when an
earthquake occurs and data are acquired.
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CSZ Margin-Wide Rupture Scenario: Compute Time

Compute time for each phase of the inference and prediction performed on Perlmutter-GPU nodes.
Time-to-solution for the online computation (Phase 4) is less than 0.2 seconds.

Phase Task #GPUs Compute time

1 fomF:m—d 512 600 x 52 m ~ 520 h
form F, : m+—q 512 21 x52m ~ 18 h

2 form G* = IiorF* 16 600x45s~45m
form GZ = I‘priorF; 16 21x45s~15m
form K := I gise + FG* 512 252k x 24 ms ~ 100 m
factorize K 25 22

3 compute Lot (q) 512 8,820 x 150 ms ~ 25 m
compute Q : d — q 512 8,820 x 150 ms ~ 25 m

4 infer parameters mp,p 512 < 0.2s
predict Qol qmap 1 <1ms
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CSZ Margin-Wide Rupture Scenario: Inferred Parameter Field (Real-Time)

Time: 420's 2 S | Time: 420's

True seafloor normal displacemel Ny Inferred normal displacement (i AN
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Normal seafloor displacement (time-integrated parameter field).
Left: True field; Right: Inferred mean from synthetic observations.
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https://drive.google.com/file/d/1-WS2pzMjf6bIyjloHDuhr8kSgwP51HIe/view
https://drive.google.com/file/d/1-WS2pzMjf6bIyjloHDuhr8kSgwP51HIe/view

CSZ Margin-Wide Rupture Scenario: Parameter Uncertainty

True sea bottom pressure (MPa) 1 Pointwise standard deviation (m)
-1.5-1.0-0500 05 1.0 1.5 /. ] 0.16 0.20 0.25 0.30 0.37

Left: Snapshot of true seafloor acoustic pressure field with 600 hypothesized sensor locations.
Right: Uncertainties plotted as pointwise standard deviations in meters of seafloor normal displacement.
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CSZ Margin-Wide Rupture Scenario: Qol Prediction (Real-Time)

Qol forecasting locations Real-time Qol predictions with uncertainties illustrated as 95% credible
intervals (Cls) inferred from noisy, synthetic data of 600 hypothesized seafloor
Time: 420's B ] 3 acoustic pressure sensors for a margin-wide rupture in the CSZ
3 T T
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Summary and Future Work

In this talk:
@ Bayesian inverse model to infer tsunamigenic seafloor motion directly from near-field
pressure data using an acoustic—gravity model in the deep ocean

@ Large-scale real-time inversion algorithms for linear autonomous dynamical systems,
exploiting block Toeplitz structure of p2o map F, enabling fast construction and compact
storage of F and efficient FFT-based F' and F* matvecs

@ MAP point computed exactly (up to discretization error) in < 0.2 seconds, for inverse
problem with O(10?) parameters and O(10%) states (with O(10°) timesteps)

@ Wave heights at critical locations and their uncertainties computed in a fraction of a
second by exploiting structure of push forward of posterior to Qol

Ongoing & future work:
@ Construct data-driven prior for Cascadia subduction zone from numerous rupture
scenarios on the fault system

@ Solve optimal experimental design problem for placement of seafloor pressure sensors

@ Exploit autonomous dynamical system structure in other inverse problems of interest
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