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● Arbitrary order curvilinear mesh elements
● Arbitrary order H1, H(curl), H(div) and L2 elements
● Bilinear/linear forms for: Galerkin, DG, etc.
● MPI-scalable assembly and linear solvers
● GPU acceleration on AMD, NVIDIA hardware
● Non-linear operators and non-linear solvers
● Explicit and implicit high-order time integration
● Integration with: hypre, SUNDIALS, SuperLU, PETSc, etc.

MFEM Workshop - GPU Kernel Optimizations Guided Tour

mfem.org v4.8 - Apr 2025

● Welcome students, new users & developers
● Exploring GPU kernel optimization strategies in MFEM

⇒ Real-time Bayesian inference at extreme scale:  
A digital twin for tsunami early warning  applied to the Cascadia subduction zone  [1]

http://mfem.org
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Application - A Digital Twin For Tsunami Early Warning

● Important and challenging problem
● Forecast wave heights or onshore inundation
● Produce better early warning systems for tsunamis

● Problem size ⇒ memory optimizations
● Key kernels ⇒ performance optimizations
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● GPU Kernel optimization: focus on GT BT D B G

● B:              ⇒             ⇒                  ⇒

● Partial Assembled HO Finite Element Operators

○ A = PT GT BT D B G P 

● Optimal memory, near-optimal FLOPs

● Matrix free: no assembly of the full matrix A

MFEM Operator Decomposition for GPU Kernels

Parallel Geometry Basis

P
hysics
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MFEM GPU Kernel Overview

● Memory: input/outputs data management

● Execution: outer/inner forall loops

● Kernel: Integrator, GTBTDBG
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Initial PA - Integrators Implementation

● Mixed integrator: B
test

, B
trial

 

● Fixed order: {4
test

, 5
trial

} dofs, 5 at quadrature points

● CPU development, GPU portable

● Extract: PA setup, Q function

AMD MI300A

Full matrix A PA Setup

PA Apply
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GPU Kernel Optimizations - Profiling and Benchmarking

● Using Google benchmark: agile development, CPU & GPU timings
● tests/benchmarks examples

AMD MI300AApple M2 Pro

● rocprofv3 & https://ui.perfetto.dev
● NVIDIA Nsight Systems/Compute

5M elements, 1.3B dofs

● -Rpass-analysis=kernel-resource-usage
[S,V,A]GPRs, ScratchSize, Occupancy, LDS Size

● --ptxas-options=-v

https://ui.perfetto.dev
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Shared Memory PA Kernel Optimizations

AMD MI300A
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● GT,G: Local to Element (L to E) vectors handled by MFEM
● "Optimized PA" reached by fixing the launch bounds
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Application - HPC Context & Algorithms

● Vector sizes: 𝒪(GB)

● Multiple read of the same data should be avoided

● Overall optimization fusion pass

● GT, G: replaced by indirection + atomics

● BT
test

DB
trial

G
trial
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Fused PA Kernel Optimizations

● Reduced memory access: PA data read once

● Challenges: 
○ register pressure
○ increased complexity
○ shared memory usage

● PA data uses 1/3 of the memory, w/:
○ avoiding caching large vectors
○ recomputing on-the-fly some values
○ reusing temporary vectors from RK4

AMD MI300A
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Fused MF Kernel Optimizations - 1/2

● No PA data stored at Quadrature points

● Extra input vectors & computations

○ Indirections, basis arrays

○ Mesh coordinates: used for 'setup'

○ Sum factorisation 3D vector grad basis

● Multiple implementations
○ smem:default, with 3D block of smem & threads

○ regs: less shared mem, 2D thread blocks

AMD MI300A

SHARED
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Fused MF Kernel Optimizations - 2/2

● Increasing the occupancy: number of wavefronts

● Use compiler output: 

○ 170 max VREG

○ 3 waves ⇒ 1638 maximum fp64

● Reducing register usage: 

○ FORALL_DIRECT

● Reducing the amount of shared memory 

○ move B
trial

, B
test

 data to constant memory

○ shuffle/re-use vector grad computation

AMD MI300A
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Shared Memory, Fused PA & Fused MF NVIDIA Kernel Optimizations

● Switch seamlessly to NVIDIA hardware

● Resilient to the different versions

● ✔ Shared memory bound kernel

NVIDIA GH200

SHARED
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Unlocking Next-Level Performance Opportunities

● Jiqun Tu added Tensor Core based contractions

● M-by-N-by-K warp-synchronous collectives

NVIDIA GH200
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● 4th generation Matrix Multiply-Add (MMA)

○ D = op(A, B) + C

○ ⇒ Higher throughput

○ ⇒ More efficient way to share data

● For shared memory bound kernels ⇒ speedup

+10 GDof/s
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Conclusion

● Practical insights for enhancing FE HPC computations

● Contributions are welcome!

● Holistic Kernel Fusion Approach

○ Not only limited to kernel launch overhead

○ Re-use data, avoid in-&-out data transfers

● WIP tensor contraction API to support:

○ Low vs. high order algorithms

○ Arbitrary number of arguments for ∂FEM
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[1] Henneking, Stefan, et al., Real-time Bayesian inference at extreme scale: A digital twin 
for tsunami early warning applied to the Cascadia subduction zone
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