An Explicit Description of Implementation of 4D, H(div)-conforming Simplicial Finite Elements in MFEM

Patrick Saber

Advised by David M. Williams, Associate Professor

The Pennsylvania State University

Department of Mechanical Engineering

Overview

Overview of the Presentation

- I. Motivation
- II. Mathematical Preliminaries
- III. Implementation Details
- IV. Order of Accuracy Results (Grad-div problem)

I. Motivation

Motivation

4D Formulation of Inhomogeneous Maxwell's Equations

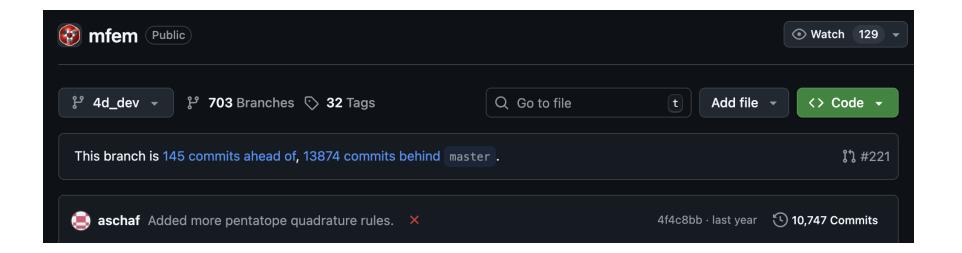
$$F = \frac{1}{2} \begin{bmatrix} 0 & -cB_x & -cB_y & -cB_z \\ cB_x & 0 & -E_z & E_y \\ cB_y & E_z & 0 & -E_x \\ cB_z & -E_y & E_x & 0 \end{bmatrix}, \quad H = \frac{1}{2} \begin{bmatrix} 0 & -cE_x & -cE_y & -cE_z \\ cE_x & 0 & B_z & -B_y \\ cE_y & -B_z & 0 & B_x \\ cE_z & B_y & -B_x & 0 \end{bmatrix}, \quad G = -\begin{bmatrix} \rho \\ j_x \\ j_y \\ j_z \end{bmatrix}$$

Final equations

$$\operatorname{curl}(F) = 4\pi G, \quad \operatorname{curl}(H) = 0, \quad \operatorname{div}(G) = 0$$

Motivation

- **Objective:** high-order, conforming finite elements for Maxwell's equations
- **Problem:** existing 4D branch of MFEM primarily contains low-order finite elements



II. Mathematical Preliminaries

Vector Spaces and Derivative Operators in 4D

4D Derivative Operators

grad, skwGrad, curl, div.

Infinite-Dimensional Sobolev Spaces

$$H\left(\operatorname{grad},\Omega,\mathbb{R}\right) = \left\{u \in L^{2}\left(\Omega,\mathbb{R}\right) : \operatorname{grad}u \in L^{2}\left(\Omega,\mathbb{R}^{4}\right)\right\},$$

$$H\left(\operatorname{skwGrad},\Omega,\mathbb{R}^{4}\right) = \left\{E \in L^{2}\left(\Omega,\mathbb{R}^{4}\right) : \operatorname{skwGrad}E \in L^{2}\left(\Omega,\mathbb{K}\right)\right\},$$

$$H\left(\operatorname{curl},\Omega,\mathbb{K}\right) = \left\{F \in L^{2}\left(\Omega,\mathbb{K}\right) : \operatorname{curl}F \in L^{2}\left(\Omega,\mathbb{R}^{4}\right)\right\},$$

$$H\left(\operatorname{div},\Omega,\mathbb{R}^{4}\right) = \left\{G \in L^{2}\left(\Omega,\mathbb{R}^{4}\right) : \operatorname{div}G \in L^{2}\left(\Omega,\mathbb{R}\right)\right\},$$

Finite Element Spaces in 4D

Finite-Dimensional Subspaces

$$V_k \Lambda^0(\mathfrak{T}^4) := P^k(\mathfrak{T}^4),$$

$$V_k \Lambda^1(\mathfrak{T}^4) := (P^{k-1}(\mathfrak{T}^4))^4 \oplus \left\{ p \in (\tilde{P}^k(\mathfrak{T}^4))^4 | p \cdot x = 0 \right\},$$

$$V_k\Lambda^2(\mathfrak{T}^4) := \mathcal{L}\left((P^{k-1}(\mathfrak{T}^4))^6\right) \oplus \left\{B \in \mathcal{L}((\tilde{P}^k(\mathfrak{T}^4))^6) | Bx = 0\right\}.$$

$$V_k\Lambda^3(\mathfrak{T}^4) := (P^{k-1}(\mathfrak{T}^4))^4 \oplus \tilde{P}^{k-1}(\mathfrak{T}^4)x,$$

$$V_k\Lambda^4(\mathfrak{T}^4) := P^{k-1}(\mathfrak{T}^4).$$

H(grad)-conforming

H(skwGrad)-conforming

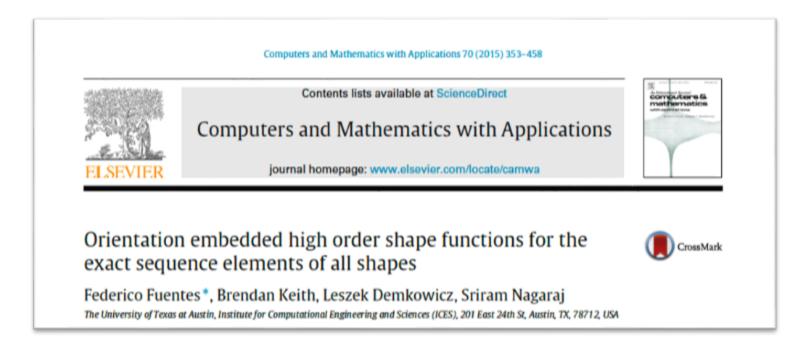
H(curl)-conforming

H(div)-conforming

L2-conforming

Inspiration

- Our 4D approach is inspired by the approach of Fuentes et al. in 3D
- F. Fuentes, B. Keith, L. Demkowicz, and S. Nagaraj, "Orientation embedded high order shape functions for the exact sequence elements of all shapes," *Computers and Mathematics with Applications*, (2015)



Conforming Shape Functions in 3D

- Advantages of the Fuentes et al. approach
 - Intuitive construction based on barycentric coordinates
 - Easily generalizable to higher dimensions
 - Flexibility for representing the basis functions of multiple derivative operators with relatively small modifications to the formulation
 - Hierarchical structure
 - Previously implemented in MFEM for square pyramids in 3D
- Extended to 4D simplices by Nigam and Williams

Conforming Shape Functions in 4D

D. Williams, N. Nigam, "Conforming Finite Element Function Spaces in Four Dimensions,
Part II: The Pentatope and Tetrahedral Prism," Computers and Mathematics with
Applications, (2024)

Computers & Mathematics with Applications

Volume 167, 1 August 2024, Pages 21-53

Conforming finite element function spaces in four dimensions, part II: The pentatope and tetrahedral prism

David M. Williams ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$, Nilima Nigam ^b

H(div)-Conforming Shape Functions

Legendre and Jacobi Polynomial Construction

Bubble Functions

$$\begin{split} \psi_{ij\ell m}^{r}\left(\vec{\lambda}_{abcde}(x)\right) &= \\ P_{i}\left(\lambda_{b}; \lambda_{a} + \lambda_{b}\right) P_{j}^{2i+1}\left(\lambda_{c}; \lambda_{a} + \lambda_{b} + \lambda_{c}\right) P_{\ell}^{2(i+j+1)}\left(\lambda_{d}; \lambda_{a} + \lambda_{b} + \lambda_{c} + \lambda_{d}\right) \\ &\cdot L_{m}^{2(i+j+\ell)+3}\left(\lambda_{e}\right) \left[\lambda_{a}\left(\nabla\lambda_{b} \times \nabla\lambda_{c} \times \nabla\lambda_{d}\right) - \lambda_{b}\left(\nabla\lambda_{c} \times \nabla\lambda_{d} \times \nabla\lambda_{d}\right) \\ &+ \lambda_{c}\left(\nabla\lambda_{d} \times \nabla\lambda_{a} \times \nabla\lambda_{b}\right) - \lambda_{d}\left(\nabla\lambda_{a} \times \nabla\lambda_{b} \times \nabla\lambda_{c}\right)\right], \end{split}$$

$$\begin{aligned} \psi_{ij\ell}^{r}\left(\vec{\lambda}_{abcd}(x)\right) &= \\ P_{i}\left(\lambda_{b}; \lambda_{a} + \lambda_{b}\right) P_{j}^{2i+1}\left(\lambda_{c}; \lambda_{a} + \lambda_{b} + \lambda_{c}\right) P_{\ell}^{2(i+j+1)}\left(\lambda_{d}; \lambda_{a} + \lambda_{b} + \lambda_{c} + \lambda_{d}\right) \\ &\cdot \left[\lambda_{a}\left(\nabla\lambda_{b} \times \nabla\lambda_{c} \times \nabla\lambda_{d}\right) - \lambda_{b}\left(\nabla\lambda_{c} \times \nabla\lambda_{d} \times \nabla\lambda_{a}\right) \\ &+ \lambda_{c}\left(\nabla\lambda_{d} \times \nabla\lambda_{a} \times \nabla\lambda_{b}\right) - \lambda_{d}\left(\nabla\lambda_{a} \times \nabla\lambda_{b} \times \nabla\lambda_{c}\right)\right], \end{split}$$

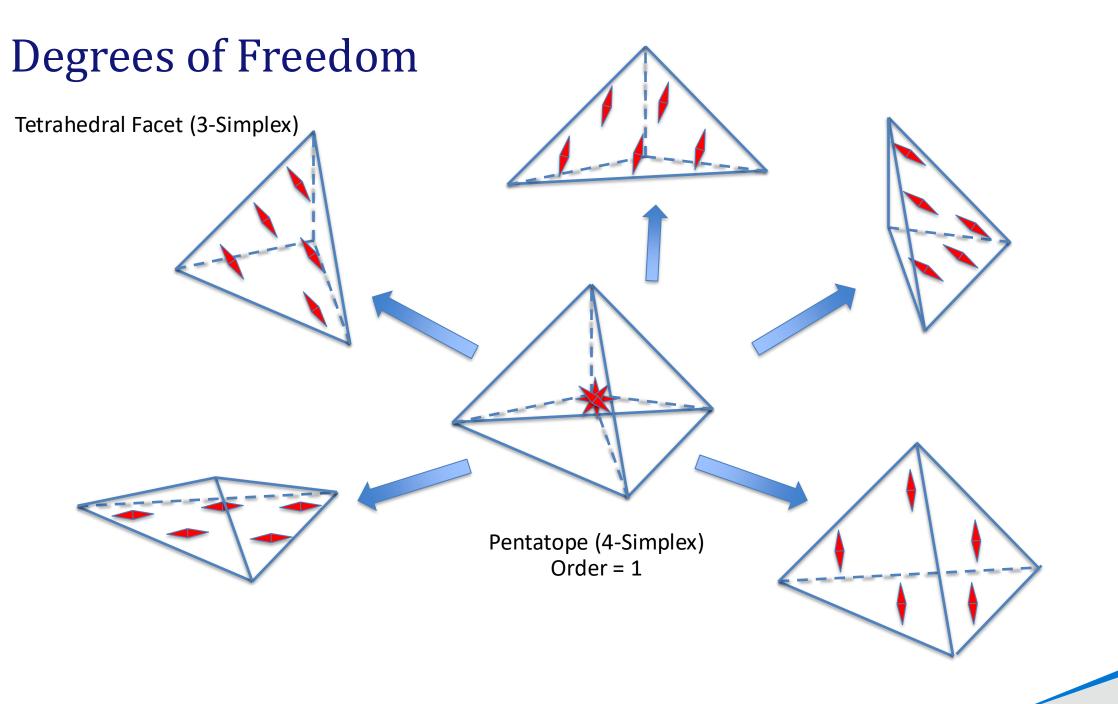
Facet Functions

$$\psi_{ij\ell}^{\mathcal{F}}\left(\vec{\lambda}_{abcd}(x)\right) =$$

$$P_{i}\left(\lambda_{b}; \lambda_{a} + \lambda_{b}\right) P_{j}^{2i+1}\left(\lambda_{c}; \lambda_{a} + \lambda_{b} + \lambda_{c}\right) P_{\ell}^{2(i+j+1)}\left(\lambda_{d}; \lambda_{a} + \lambda_{b} + \lambda_{c} + \lambda_{d}\right)$$

$$\cdot \left[\lambda_{a}\left(\nabla\lambda_{b} \times \nabla\lambda_{c} \times \nabla\lambda_{d}\right) - \lambda_{b}\left(\nabla\lambda_{c} \times \nabla\lambda_{d} \times \nabla\lambda_{a}\right) + \lambda_{c}\left(\nabla\lambda_{d} \times \nabla\lambda_{a} \times \nabla\lambda_{b}\right) - \lambda_{d}\left(\nabla\lambda_{a} \times \nabla\lambda_{b} \times \nabla\lambda_{c}\right)\right],$$

III. Implementation Details



Constructing the Vandermonde Matrix

Construct jth vector basis function with k = 0 to 4 components, ψ_i^k evaluated at points r_i

Contract each function with the appropriate normal vector n_k

This operation returns a generalized Vandermonde matrix \mathcal{V}_{ij}

$$\widehat{\mathcal{V}}_{ijk} = \psi_j^k(\boldsymbol{r}_i),$$
 $\mathcal{V}_{ij} = \widehat{\mathcal{V}}_{ijk}n_k.$

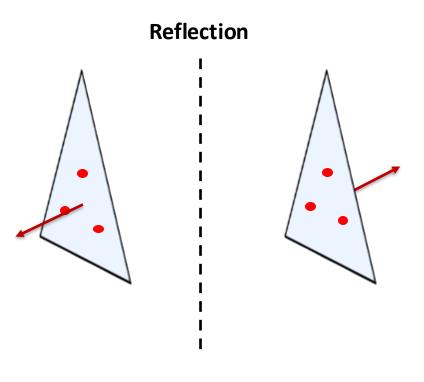
$$\mathcal{V}_{ij} = \widehat{\mathcal{V}}_{ijk} n_k.$$

- In 3D each tetrahedral has 4 triangular faces that need to match the orientation of a neighboring tetrahedral face
- Triangles have 6 unique orientations produced by reflections or rotations of the base geometry
- In 4D each Pentatope has 5 tetrahedral facets that need to match the orientation of a neighboring Pentatopic facet.
- Tetrahedra have 24 unique orientations produced by reflections or rotations of the base geometry

Transformations of Degrees of Freedom

Identity Configuration Orientation Reflection Rotation

Normal Vector Sign Flip




```
for (int j = 0; j <= p; j++)
   for (int i = 0; i + j \le p; i++)
      int o = TriDof - ((pp2 - j)*(pp1 - j))/2 + i;
      int k = p - j - i;
      TriDofOrd[0][o] = o; // (0,1,2)
      TriDofOrd[1][o] = -1-(TriDof-((pp2-j)*(pp1-j))/2+k); // (1,0,2)
                        TriDof-((pp2-i)*(pp1-i))/2+k; // (2,0,1)
      TriDofOrd[2][o] =
      TriDofOrd[3][0] = -1-(TriDof-((pp2-k)*(pp1-k))/2+i); // (2,1,0)
                        TriDof-((pp2-k)*(pp1-k))/2+j; // (1,2,0)
      TriDofOrd[4][o] =
      TriDofOrd[5][o] = -1-(TriDof-((pp2-i)*(pp1-i))/2+j); // (0,2,1)
      if (!signs)
        for (int kk = 1; kk < 6; kk += 2)
           TriDofOrd[kk][o] = -1 - TriDofOrd[kk][o];
```

Degree of Freedom Indexes					
0	1	2			
1	0	2			
2	0	1			
2	1	0			
1	2	0			
0	2	1			

Degree of Freedom Indexes					
0	1	2			
-2	-1	-3			
2	0	1			
-3	-2	-1			
1	2	0			
-1	-3	-2			


```
for (int k=0; k<=p; k++)
    for (int j=0; j+k<=p; j++)
         for (int i=0; i+j+k<=p; i++)</pre>
                 int o = TetDof + TriDof2 - ((pp3-k)*(pp2-k)*(pp1-k))/6 - (pp2-j)*
                               (pp1-j)/2 - k*j + i;
                 int l = p-k-i-i:
                 TetDofOrd[0][o] = o;
                 TetDofOrd[1][o] = -1 - (TetDof + TriDof2 - ((pp3-j)*(pp2-j)*(pp1-j))/6 -
                                                               (pp2-k)*(pp1-k)/2 - j*k + i);
                 TetDofOrd[2][o] =
                                                           TetDof + TriDof2 - ((pp3-i)*(pp2-i)*(pp1-i))/6 -
                                                               (pp2-k)*(pp1-k)/2 - i*k + j;
                 TetDofOrd[3][o] = -1 - (TetDof + TriDof2 - ((pp3-k)*(pp2-k)*(pp1-k))/6 -
                                                               (pp2-i)*(pp1-i)/2 - k*i + j);
                 TetDofOrd[4][o] =
                                                            TetDof + TriDof2 - ((pp3-j)*(pp2-j)*(pp1-j))/6 -
                                                               (pp2-i)*(pp1-i)/2 - j*i + k;
                 TetDofOrd[5][o] = -1 - (TetDof + TriDof2 - ((pp3-i)*(pp2-i)*(pp1-i))/6 -
                                                               (pp2-j)*(pp1-j)/2 - i*j + k);
                 TetDofOrd[6][o] =
                                                             TetDof + TriDof2 - ((pp3-k)*(pp2-k)*(pp1-k))/6 -
                                                               (pp2-1)*(pp1-1)/2 - k*1 + j;
                 TetDofOrd[7][o] = -1 - (TetDof + TriDof2 - ((pp3-1)*(pp2-1)*(pp1-1))/6 - ((pp3-1)*(pp1-1))/6 - ((pp3-1)*(pp1
                                                               (pp2-k)*(pp1-k)/2 - 1*k + j);
                 TetDofOrd[8][o] =
                                                           TetDof + TriDof2 - ((pp3-1)*(pp2-1)*(pp1-1))/6 -
                                                               (pp2-j)*(pp1-j)/2 - 1*j + k;
                 TetDofOrd[9][o] = -1 - (TetDof + TriDof2 - ((pp3-j)*(pp2-j)*(pp1-j))/6 -
                                                               (pp2-1)*(pp1-1)/2 - j*1 + k);
                 TetDofOrd[10][o] =
                                                             TetDof + TriDof2 - ((pp3-j)*(pp2-j)*(pp1-j))/6 -
                                                               (pp2-k)*(pp1-k)/2 - j*k + 1;
                 TetDofOrd[11][o] = -1 - (TetDof + TriDof2 - ((pp3-k)*(pp2-k)*(pp1-k))/6 -
                                                             (pp2-j)*(pp1-j)/2 - k*j + 1);
                 TetDofOrd[12][o] =
                                                               TetDof + TriDof2 - ((pp3-i)*(pp2-i)*(pp1-i))/6 -
                                                               (pp2-1)*(pp1-1)/2 - i*1 + k;
                 TetDofOrd[13][o] = -1 - (TetDof + TriDof2 - ((pp3-1)*(pp2-1)*(pp1-1))/6 -
                                                               (pp2-i)*(pp1-i)/2 - 1*i + k);
                 TetDofOrd[14][o] =
                                                               TetDof + TriDof2 - ((pp3-k)*(pp2-k)*(pp1-k))/6 -
                                                             (pp2-i)*(pp1-i)/2 - k*i + 1;
                 TetDofOrd[15][o] = -1 - (TetDof + TriDof2 - ((pp3-i)*(pp2-i)*(pp1-i))/6 -
                                                               (pp2-k)*(pp1-k)/2 - i*k + 1);
                 TetDofOrd[16][o] =
                                                             TetDof + TriDof2 - ((pp3-1)*(pp2-1)*(pp1-1))/6 -
                                                               (pp2-k)*(pp1-k)/2 - 1*k + i;
                 TetDofOrd[17][o] = -1 - (TetDof + TriDof2 - ((pp3-k)*(pp2-k)*(pp1-k))/6 -
                                                             (pp2-1)*(pp1-1)/2 - k*1 + i);
                 TetDofOrd[18][o] =
                                                             TetDof + TriDof2 - ((pp3-i)*(pp2-i)*(pp1-i))/6 -
                                                               (pp2-j)*(pp1-j)/2 - i*j + 1;
                 TetDofOrd[19][o] = -1 - (TetDof + TriDof2 - ((pp3-j)*(pp2-j)*(pp1-j))/6 -
                                                               (pp2-i)*(pp1-i)/2 - j*i + 1);
                 TetDofOrd[20][o] =
                                                             TetDof + TriDof2 - ((pp3-j)*(pp2-j)*(pp1-j))/6 -
                                                               (pp2-1)*(pp1-1)/2 - j*1 + i;
                 TetDofOrd[21][o] = -1 - (TetDof + TriDof2 - ((pp3-1)*(pp2-1)*(pp1-1))/6 -
                                                               (pp2-j)*(pp1-j)/2 - 1*j + i);
                 TetDofOrd[22][o] =
                                                             TetDof + TriDof2 - ((pp3-1)*(pp2-1)*(pp1-1))/6 -
                                                               (pp2-i)*(pp1-i)/2 - 1*i + j;
                 TetDofOrd[23][o] = -1 - (TetDof + TriDof2 - ((pp3-i)*(pp2-i)*(pp1-i))/6 -
                                                               (pp2-1)*(pp1-1)/2 - i*1 + j);
```

Degree of Freedom Indexes					
0	1	2	3		
0	1	3	2		
0	3	1	2		
0	3	2	1		
2	0	1	3		
3	0	1	2		

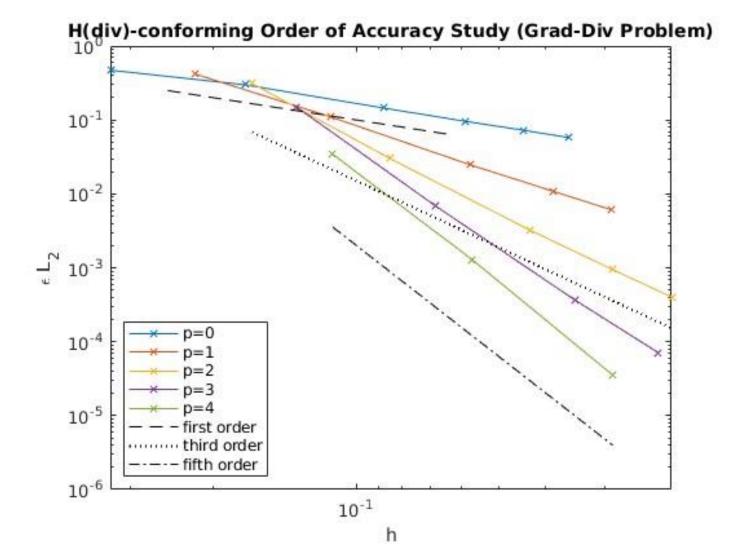
Degree of Freedom Indexes				
0	1	2	3	
-1	-2	-4	-3	
0	3	1	2	
-1	-3	-2	-4	
0	2	3	1	
-1	-4	-3	-2	

** Tables not complete

Order of Accuracy

$$-\nabla(\nabla\cdot\vec{F})+\vec{F}=\vec{f}$$

$$ec{F} = \left[egin{array}{c} cos(\kappa x) sin(\kappa y) sin(\kappa z) sin(\kappa t) \ cos(\kappa y) sin(\kappa z) sin(\kappa t) sin(\kappa x) \ cos(\kappa z) sin(\kappa t) sin(\kappa x) sin(\kappa y) \ cos(\kappa t) sin(\kappa x) sin(\kappa y) sin(\kappa z) \end{array}
ight]$$



Future Work

- Implement high-order H(skwGrad)-conforming finite elements on the 4-simplex
- Implement high-order H(curl)-conforming finite elements on the 4-simplex

**Theoretical details can be found on MFEM's seminar page in Dr. David Williams seminar talk on: Finite Element Exterior Calculus in Four-Dimensional Space

