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I. Motivation  
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Motivation  
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4D Formulation of Inhomogeneous Maxwell’s Equations 



Motivation  
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• Objective: high-order, conforming finite elements for Maxwell’s equations

• Problem: existing 4D branch of MFEM primarily contains low-order finite elements



II. Mathematical Preliminaries 
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Vector Spaces and Derivative Operators in 4D  

4D Derivative Operators 

Infinite-Dimensional Sobolev Spaces
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Finite Element Spaces in 4D   

Finite-Dimensional Subspaces
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H(grad)-conforming 

H(skwGrad)-conforming 

H(curl)-conforming 

H(div)-conforming 

L2-conforming 



Inspiration 7

• Our 4D approach is inspired by the approach of Fuentes et al. in 3D 

• F. Fuentes, B. Keith, L. Demkowicz, and S. Nagaraj, “Orientation embedded high order shape 
functions for the exact sequence elements of all shapes,” Computers and Mathematics with 
Applications, (2015)



Conforming Shape Functions in 3D   8

• Advantages of the Fuentes et al. approach

– Intuitive construction based on barycentric coordinates

– Easily generalizable to higher dimensions

– Flexibility for representing the basis functions of multiple derivative operators with 
relatively small modifications to the formulation

– Hierarchical structure

– Previously implemented in MFEM for square pyramids in 3D

• Extended to 4D simplices by Nigam and Williams



Conforming Shape Functions in 4D   9

• D. Williams, N. Nigam, “Conforming Finite Element Function Spaces in Four Dimensions, 
Part II: The Pentatope and Tetrahedral Prism,” Computers and Mathematics with 
Applications, (2024)



H(div)-Conforming Shape Functions

• Legendre and Jacobi Polynomial Construction
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Bubble Functions Facet Functions



III. Implementation Details
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Degrees of Freedom  12

Pentatope (4-Simplex)
Order = 1

Tetrahedral Facet (3-Simplex)



Constructing the Vandermonde Matrix   

Construct jth  vector basis function with k = 0 to 4 components, 𝜓𝑗
𝑘  evaluated at points 𝒓𝑖

Contract each function with the appropriate normal vector 𝑛𝑘

This operation returns a generalized Vandermonde matrix 𝒱𝑖𝑗
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Orientation Matching Across Elements     

• In 3D each tetrahedral has 4 triangular faces that need to match the orientation of a neighboring 
tetrahedral face

• Triangles have 6 unique orientations produced by reflections or rotations of the base geometry 

• In 4D each Pentatope has 5 tetrahedral facets that need to match the orientation of a neighboring 
Pentatopic facet. 

• Tetrahedra have 24 unique orientations produced by reflections or rotations of the base geometry
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Orientation Matching Across Elements     
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Orientation Matching Across Elements     
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Degree of Freedom Indexes 

0 1 2

1 0 2

2 0 1

2 1 0

1 2 0

0 2 1

Degree of Freedom Indexes 

0 1 2

-2 -1 -3

2 0 1

-3 -2 -1

1 2 0

-1 -3 -2



Orientation Matching Across Elements     
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Degree of Freedom Indexes 

0 1 2 3

0 1 3 2

0 3 1 2

0 3 2 1

2 0 1 3

3 0 1 2

Degree of Freedom Indexes 

0 1 2 3

-1 -2 -4 -3

0 3 1 2

-1 -3 -2 -4

0 2 3 1

-1 -4 -3 -2

** Tables not complete



Order of Accuracy     

 

18



Future Work   

•  Implement high-order H(skwGrad)-conforming finite elements on the 4-simplex

• Implement high-order H(curl)-conforming finite elements on the 4-simplex
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**Theoretical details can be found on MFEM’s seminar page in Dr. David Williams 
seminar talk on: Finite Element Exterior Calculus in Four-Dimensional Space 
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