High-Order Space-Time Finite Element Simulations of Fluid Mechanics Using MFEM

RAMIN PAHNABI, KENDRICK M. SHEPHERD

BRIGHAM YOUNG UNIVERSITY

MFEM COMMUNITY WORKSHOP
SEPTEMBER 2025

Motivation for High-Performance Compressible Navier-Stokes Simulation

✓ Multiphysics

- Compressible Navier-Stokes equations form the core of many Multiphysics problems
 - Requires handling tight coupling of fluid, thermal and chemical processes
 - Enables simulation of real-world engineering systems

✓ Multiscale Dynamics

- Real-world applications exhibit a wide range of spatial and temporal scales
- Coexistence of fast (shocks, waves) and slow (thermal, structural) scales

✓ Advanced Applications

- **Hypersonic**: shock-shock interactions, high-temp gas physics
- Aerothermoelasticity: coupled fluid-thermal-structural response in highspeed vehicles

Compressible Euler equations, Mach 3 flow around a cylinder in 2D, stabilized DG-P1 spacial discretization. Image courtesy of Hennes Hajduk, as part of the 2021 MFEM Workshop Visualization Contest.

➤ *Goal:* Enable robust, accurate simulation of complex, high-speed, Multiphysics systems using scalable space-time FEM

How to get High-Performance in Compressible Navier-Stokes Simulation

1. Scalability

How well the solver performs as we increase problem size and number of processors

- Domain decomposition
- Parallel space-time methods
- Use of scalable libraries (e.g., MFEM, Hypre)

Goal: Maintain performance as simulations grow to millions/billions of unknowns.

2. Efficiency

Maximizing computational speed and minimizing resource usage

- Adaptive meshing (spatial & temporal refinement only where needed)
- High-order elements for more accuracy per DOF
- Preconditioning & solver
 optimization (e.g., GMRES + block
 preconditioners)

Goal: Solve large problems quickly without wasting memory or compute time.

3. Stability

Ensuring the simulation doesn't blow up or produce non-physical results

- Stabilization methods: SUPG, entropy viscosity, τ -stabilization
- For advective stability
 Consistent of shock
 capturing methods for
 compressible flow
- Careful time integration: *Goal:* Handle shocks, stiffness, and Multiphysics coupling robustly.
- Achieving high performance requires a careful balance of **parallel scalability**, **numerical efficiency**, and **algorithmic stability**, especially critical for large-scale, Multiphysics simulations.

What is MFEM?

- ➤ **MFEM** is an open-source C++ library for solving PDEs using finite element methods (FEM).
- Developed and maintained by LLNL (Lawrence Livermore National Laboratory).

Supports:

- High-performance computing (HPC)
- High-order finite elements
- Scalable, parallel simulations
- General static and dynamic PDEs
- Supports 1D, 2D, and 3D simulations
- Handles structured & unstructured meshes
- Compatible with AMR (adaptive mesh refinement)

Why Isogeometric Analysis (IGA): Accuracy with Fewer DOFs

• IGA is powerful for getting high accuracy with fewer elements.

Ideal for compressible flow, wave propagation, and Multiphysics systems where precision matters.

Why IGA?

√ Higher Accuracy per DOF

- Spline bases are **smoother** than traditional FEM basis (e.g., C1, C2 continuity).
- Captures complex solution features more accurately with fewer elements.
- Ideal for problems involving waves, sharp gradients, or geometry-sensitive physics.

✓ Built-in High-Order

 Naturally supports high-order polynomial degrees without loss of stability.

Espen Sande, Carla Manni and Hendrik Speleers, "Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis," *Numerische Mathematik*, vol. 144, 889-929, 2020.

Why Space-Time Finite Element Methods?

Feature	Finite Difference (FD) in Time	CG in Time	DG in Time
Time marching	✓ Yes	× No	✓ Yes
Accuracy (in time)	Typically, Low (1st or 2nd order)	Arbitrarily high depending on FEM choice (3rd order typical)	Arbitrarily high depending on FEM choice (3rd order typical)
Parallelism in time	X Sequential	✓ Parallelizable	X Sequential

Hughes et al., 2010

Integrated High-Performance Strategy with MFEM

By combining **MFEM + IGA + Space-Time FEM**, we create a powerful, scalable framework for solving advanced compressible flow and Multiphysics problems—**efficiently and accurately** on modern parallel computing architectures.

- ✓ *MFEM provides the engine and infrastructure.*
- ✓ IGA optimizes accuracy, stability, and resource use.
- ✓ Space-time FEM adds stability, accuracy, and flexibility in transient, nonlinear problems.

Roadmap

Compressible Navier-Stokes from Advection-Diffusion

Advection Diffusion

$$\frac{\partial u}{\partial t} + \boldsymbol{v} \cdot \nabla u - \nabla \cdot (\boldsymbol{\kappa} \nabla u) = f \text{ in } \Omega \times (0, T)$$

$$u = u_0 \text{ in } \Omega \times \{0\}$$

$$u = g \text{ on } \Gamma_g \times (0, T)$$

$$-v_n^- + (\kappa \nabla u) \cdot \boldsymbol{n} = \hbar \text{ on } \Gamma_\hbar \times (0, T),$$

<u>Compressible Navier-Stokes</u>

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{\nabla} \cdot \mathbf{F} - \mathbf{\nabla} \cdot \mathbf{E} - \mathbf{R} = 0$$

$$\frac{\partial \mathbf{U}}{\partial t} + \mathbf{A}_i \frac{\partial \mathbf{U}}{\partial x_i} - \frac{\partial}{\partial x_i} \left(\mathbf{K}_{ij} \frac{\partial \mathbf{U}}{\partial x_i} \right) - \mathbf{R} = \mathbf{0},$$

$$egin{aligned} oldsymbol{U} &= egin{pmatrix}
ho \
ho oldsymbol{v}_1 \
ho oldsymbol{v}_2 \
ho oldsymbol{v}_3 \
ho e \end{pmatrix} & oldsymbol{F}_i &= egin{pmatrix} oldsymbol{v}_i
ho oldsymbol{v}_1 + \delta_{i1} p \ oldsymbol{v}_i
ho oldsymbol{v}_2 + \delta_{i2} p \ oldsymbol{v}_i
ho oldsymbol{v}_3 + \delta_{i3} p \ oldsymbol{v}_i (
ho e + p) \end{pmatrix} & oldsymbol{E}_i &= egin{pmatrix} 0 \ oldsymbol{T}_{i1} \ oldsymbol{T}_{i2} \ oldsymbol{T}_{i3} \ -oldsymbol{q}_i + oldsymbol{T}_{ik} oldsymbol{v}_k \end{pmatrix} & oldsymbol{R} &=
ho egin{pmatrix} 0 \ oldsymbol{b}_1 \ oldsymbol{b}_2 \ oldsymbol{b}_3 \ oldsymbol{b}_i oldsymbol{v}_i + r \end{pmatrix}, \end{aligned}$$

<u>Compressible Navier-Stokes (Entropy Variables):</u>

$$ilde{m{A}}_0 rac{\partial m{V}}{\partial t} + ilde{m{A}}_i rac{\partial m{V}}{\partial x_i} - rac{\partial}{\partial x_i} \Big(ilde{m{K}}_{ij} rac{\partial m{V}}{\partial x_j} \Big) - m{R} = m{0},$$

ole Navier-Stokes (Entropy Variables):

$$\tilde{\boldsymbol{A}}_{0}\frac{\partial \boldsymbol{V}}{\partial t} + \tilde{\boldsymbol{A}}_{i}\frac{\partial \boldsymbol{V}}{\partial x_{i}} - \frac{\partial}{\partial x_{i}}\left(\tilde{\boldsymbol{K}}_{ij}\frac{\partial \boldsymbol{V}}{\partial x_{j}}\right) - \boldsymbol{R} = \boldsymbol{0}, \qquad \boldsymbol{V} = \frac{\partial H}{\partial \boldsymbol{U}} = \frac{1}{\rho\varepsilon}\begin{pmatrix} -U_{5} + \rho\varepsilon(\gamma + 1 - s + s_{0}) \\ U_{2} \\ U_{3} \\ U_{4} \\ -U_{1} \end{pmatrix}, \quad \boldsymbol{BY}$$

Space-Time Discretization

Advection Diffusion

$$B(w,u) = \int_{Q} -\frac{\partial w}{\partial t}u - \nabla w \cdot (\boldsymbol{v}u) + \nabla w \cdot (\boldsymbol{\kappa} \nabla u)dQ + \int_{P_{\hbar}} wuv_{n}^{+}dP_{\hbar} + \int_{\Omega} w|_{t=T}u|_{t=T}d\Omega$$

$$L(w) = \int_{Q} wfdQ + \int_{P_{\hbar}} w\hbar dP_{\hbar} + \int_{\Omega} w|_{t=0}u|_{t=0}d\Omega.$$

$$N_A(\boldsymbol{x},t) = B_{\hat{A}}(\boldsymbol{x})B_{\tilde{A}}(t),$$

$$\int_{Q} -\nabla N_{A} \cdot (\boldsymbol{v}N_{B}) dQ = \int_{0}^{T} \int_{\Omega} \nabla (B_{\hat{A}}B_{\tilde{A}}) \cdot (\boldsymbol{v}B_{\hat{B}}B_{\tilde{B}}) d\Omega dt
= \int_{0}^{T} B_{\tilde{A}}B_{\tilde{B}} \int_{\Omega} \nabla B_{\hat{A}} \cdot (\boldsymbol{v}B_{\hat{B}}) d\Omega dt.$$

Hughes et al., 2010

$$egin{aligned} egin{aligned} egi$$

$$\hat{K}_{\tilde{A}\tilde{B};\hat{A}\hat{B}}(t) = \frac{\partial B_{\tilde{A}}}{\partial t} B_{\tilde{B}} \int_{\Omega} B_{\hat{A}} B_{\hat{B}} d\Omega - B_{\tilde{A}} B_{\tilde{B}} \int_{\Omega} \nabla B_{\hat{A}} \cdot (\boldsymbol{v}B_{\hat{B}}) d\Omega + B_{\tilde{A}} B_{\tilde{B}} \int_{\Omega} \nabla B_{\hat{A}} \cdot (\boldsymbol{\kappa}\nabla B_{\hat{B}}) d\Omega + B_{\tilde{A}} B_{\tilde{B}} \int_{\Omega} B_{\hat{A}} B_{\hat{B}} v_n^d \Gamma + B_{\tilde{A}} |_{t=T} B_{\tilde{B}} |_{t=T} \int_{\Omega} B_{\hat{A}} B_{\hat{B}} d\Omega \quad (138)$$

Steady Advection Diffusion Equations

The Steady Advection Diffusion that we are interested in solving is:

$$V. 2u - 2.(k2u) = f \text{ in } \Omega$$

$$u = g \text{ on } \Gamma_g$$

Exact Solution: $U(x) = \sin(\beta x) * \sin(\beta y) + g$

$$f = k * (2 \beta * sin(\beta x) * sin(\beta y)) + v(x)*\beta * cos(\beta x) * sin(\beta y) + v(y)*\beta * sin(\beta x) * cos(\beta y)$$

$$V(x) = 100, V(y) = 0$$

Mesh size	L2 Error	L2 Rate	H1 Error	H1 Rate
0.25	0.0187753	0	0.511981	0
0.125	0.00420775	2.15771	0.253011	1.01689
0.0625	0.00103452	2.02409	0.126061	1.00508
0.03125	0.000257731	2.00503	0.0629753	1.00126

GLS Stabilization Impact

Without Stabilization

Total Refinement = 4 Serial Refinement = 4 Iteration Number = 900 No Convergence

With GLS Stabilization

Total Refinement = 4 Serial Refinement = 4 Iteration Number = 16

Mesh size	L2 Error	L2 Rate	H1 Error	H1 Rate
0.25	12516.2	0	112265	0
0.125	6.70046	10.8672	127.552	9.7816
0.0625	12.4654	-0.895598	485.702	-1.92898
0.03125	0.341456	5.19009	27.738	4.13013

Mesh size	L2 Error	L2 Rate	H1 Error	H1 Rate
0.25	0.023214	0	0.505617	0
0.125	0.00478431	2.27861	0.252374	1.00248
0.0625	0.0011332	2.07791	0.125983	1.00233
0.03125	0.000301709	1.90917	0.0629614	1.00069

Skew To Mesh

Velocity = [500, 500], κ = 0.01 Length = 0, F = 0, Ω = [0,L]

h = 6.25 e-2 Total Refinement = 2

h = 6.25 e-2 Total Refinement = 8 With GLS Stabilization

Skew to Mesh for Spacetime Solver

Implementation Challenges: From Advection-Diffusion to Compressible Navier-Stokes

✓ Step 1: Success with Space-Time Advection-Diffusion

- Implemented space-time FEM for advection-diffusion
- Achieved stable and accurate results
- Validated numerical setup, mesh handling, and solver behavior

1. Creating Local Forms in MFEM

- MFEM has standard local integrators (e.g., w·∇u)
- But compressible Navier-Stokes requires custom forms like: (u·∇w)
- Advection-diffusion → 1 variable (e.g., scalar u)
- Compressible Navier-Stokes → 4+
 variables (think of density, velocity
 components, temperature)
- ✓ **Solution**: Implemented custom local integrators to define correct physics.

2. Manual Space-Time Integration in MFEM

- MFEM provides strong support for spatial finite element methods, but no native functionality for fully-coupled space-time integration.
- ✓ **Solution**: Manual Space-Time Formulation
 - 1. Separated spatial and temporal components:
 - 2. Custom Integration
 - 3. Manual Assembly
 - ✓ Enabled high-order space-time formulation despite MFEM limitations

3. Complex Boundary Conditions

- Advection-diffusion: simpler Dirichlet/Neumann BCs
- Compressible flow: nonlinear, physically coupled BCs (e.g., inflow/outflow)
- ✓ **Solution**: Required more careful implementation and solver.

Path Forward

Additional Challenges we're facing ...

- ☐ Step 2: Moving to Compressible Navier-Stokes
 - Introduced **new complexities and challenges**:

1. Switching from Multi-Corrector (Shakib et al., 1989) to Newton Solver Challenges Faced:

Newton requires:

Consistent and smooth residual formulation

Compressible NS system is **strongly nonlinear**, with:

Coupled variables (p, u, E)

Nonlinear boundary terms

☐ Even small mistakes in the residual blow up the solver. Still in progress.

2. Applying Boundary Conditions in MFEM

In MFEM, boundary conditions are applied through FormLinearSystem(...), which modifies the global stiffness matrix ${\bf K}$ and RHS vector ${\bf F}$ using constraints.

The Issue:

Repeated errors from Eliminate RowsCols(...):
"Tried to eliminate rows/cols that should exist, but MFEM couldn't find them."

Debugging showed that all indices were present, but the

Debugging showed that all indices were present, but the process **still failed.**

✓ Solution:

Skipped FormLinearSystem, and instead applied boundary conditions **manually**:

Zeroed out relevant rows/columns Set diagonal to 1 Adjusted the RHS accordingly

☐ *Manual application gave me more control and worked reliably.*

Conclusion:

- Integration of MFEM, IGA, and Space-Time FEM
 - Combining MFEM + IGA + Space-Time FEM creates a powerful pathway toward high-performance simulation of complex PDEs—though it requires deep customization, especially when transitioning to fully nonlinear, compressible systems.
- Validation on Benchmark Problems:
 - The developed framework has been successfully validated on linear and nonlinear advection-diffusion problems. These results confirm the accuracy, stability, and convergence of the method, providing confidence in its extension to more complex physics.
- Toward Space-Time Multiphysics Compressible Flow
 - Our objective is to develop Multiphysics fluid simulations based on space-time compressible flow. We have outlined the motivation and approach, and we hope to complete the work and publish the results soon.

Questions? / Feedback! / Advice!

