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Motivation and Model: Classic Pennes Model

Pennes (Bioheat Transfer) Equation

cpur — V - (kVu) + cpppwp(u — up) = f,

u : tissue temperature up : blood temperature

p : tissue density pb : blood density

c : tissue specific heat cp : blood specific heat

k : tissue conductivity wp : blood vol. flow rate

f: source (e.g. metabolism)

Blood-Tissue Energy Exchange
Units of cpppwp are [W m—3 °C—1],

Interpret as energy exchanged per unit vol-
ume per degree difference in u and u.

Maurice Herzog, 1950, having lost his gloves leading the first
successful climb of Annapurna.

Reference: Pennes (1948); Analysis of Tissue and Arterial Blood Temperatures 2/13
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Motivation and Model

R _ Body Temperature
Bioheat Transfer Equation

V- (KVu) + Ry v) = , (1a) n% +S(v, (u)a) =& (2a)
—kVu-v=a(uv) (ib) v(0) = Vinit (2b)
u(x,0) = uinit(x) (1c)

Define (u(t))q = |Q|7" [, u(-, t) dx

Assumptions

(a) R, S, « are Lipschitz with constant L.

(b) @ € C*(R) and has derivatives bounded by L.

(c) kK >0and c,k € L(Q) with 0 < kmin < k(x) < kmax < oo for a.e. x € §; similar for c.
(d) f e L0, T; %)) and g € L°°(0, T)

3713
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Linear Model: Coefficients

Summary
o]

Constant Coefficient (Linear) Model
R(u, V) = A(Ll = V) _ Cair(u - Uair)7 u € O%ir,
(V) =1 ¢ 0
S(u,v) = B(v — (u)q) wist (U= V), U € OQuwrist-
‘ Cof. Value Source Units Motivation
® 3.5 x 103 [1] [ kg_l OC_l] heat capacity, muscle
K b 3617 8] Pkg—locl heat capacity, blood
5 k 0.42 [1] Wm—1°c=1]  thermal conductivity, muscle
uE_, Pb 1050 [1] [kg m_3] density, blood
wp 1.1 x 1073 2] LL—1ls—Y normothermic hand blood flow rate
A chPpwh 3] Wm—39°Cc—1]  coefficient from Pennes equation
T ug 34 [2] [°q approximate mean skin temperature
ZE vo 37 [2] [°q] normothermic deep body temperature
E f 0 2] W m=3] hands produce little internal heat
é g 700 [4] [w m73] maximal shivering metabolic heat generation rate
) G 136 [2] w m—20° C_l] energy dissipation coefficient from
Ugiy —40 [5] [°q external temp. where exposed skin freezes in seconds
uy 10 [5] €] little or no local blood flow
& up 32 [°q normothermic local blood flow
2 v 28 [°q cessation of extremity blood flow
E v 37 [°q] normothermic extremity blood flow
B 0.07 A Wm=3°c1] a4 hoc
Curist 100 Wm~=2°c™  ad hoc
Table 1: Coefficients used in numerical experiments.

[1] IT'IS Database for thermal and electromagnetlc parameters of blolog/cal tissues
[2] Taylor, et al. (2014); Hands and feet: ph and
[3] Pennes (1948); Analysis of Tissue and Arterial Blood Temperatures
[4] Boron (2012); Medical Physrology 2nd Edition

llins (1 ; H hermia:_The F:
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Linear Model: Simulation

MFEM Results
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Constant Coefficient (Linear) Model

R(u,v) = A(u—v)
S(u,v) = B(v — (u)q)

a(u,v) =

Cair(‘-’ - Uair)»
erist(u - V)7

ue 8Qair7
ue 8Qwr;st.

temp [°C]
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v(t) and (u(t))a

Loss of Consciousness
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Frostbite, t = 40 min
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Theoretical Results: Weak and Discrete Schemes

Weak Form
We seek u € L2(0, T; HY(Q)) with d:u € L?(0, T; H*()’) and v : (0, T] — R such that
(Catuv@)+(kvu7v‘»0)+(r(u’ V)v(p)_(a("“ V):‘P)BQ = (f,(p), S HI(Q)7O< tS T:
u(-,0) = Uit € Lz(Q),
K% 4 s(t,v,(u)g) = g 0<t<T,
v(0) Vinit

Fully Discrete Scheme
We discretize by order 1 Lagrange finite elements in space and by backward-Euler in time.
That is, for each t" = nt for tau > 0, we seek (U", V") € V}, x R such that

(C dtUnv X) + (k VUn7 VX) + (r(Un7 Vn)7 X) - (a(Unv Vn)7 X)aﬂ = (fnv X)7 X € Vh7
d:V'+s(V7, (UMa) = g,

7= f(-,t") and g" = g(t"), Vi), C HY(Q) is the test space, and d; is the standard
backward difference operator.
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Theoretical Results: Stability Results

Theorem (Stability estimate) Let Assumptions (a) through (d) hold and let the trace
theorem hold with constant Cirace. Let also (u, v) be a (weak) solution of (1)-(2). Define

E(t) := (cu, u)2(q) + KV, 0<t<T.

Then there exist constants A > 0 and C > 0 depending only on Kmin, L, Ctrace, ||, and |09
such that

E(t) < ¥ {E(O) +Ct+ /Ot (IF (I + lg(s)?) ds

Corollary (Bound on d—‘;)
Under the assumptions otp the previous theorem, there exist constants Cy, C; > 0, depending only on cpmin,
min, 5, L, Cirace, 2], [0Q, T, and data ||uiniel 2(q). [Vinitl. Ifll 20, 7:12()): l1€]lo0 (0, 7). Such that

dv

Zl <+ Gt/
prl 1+ Ge

sup
te[0,T]
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Theoretical Results: Discrete Results

Theorem (Discrete stability estimate) Let (U", V") be the solution of the discrete problem
with initial data (uinit,h, Vinit)- Set

W o (C" U",UH)LZ(Q)-FN(V")Z, 0<n< Nt

Then, under the same prior assumptions, there exist constants A > 0 and C > 0 depending
only on kmin, L, Girace, |0€2|, and || such that for all 0 < n < N7:

I£41l + lg*| + € . 1
E" < (1 Ay Z w, assuming 7 < = (9)

Theorem (A-—priori error estimate) Under the same assumptions as previous theorems, for
every h > 0 and 7 sufficiently small the total error e" satisfies

llellLoo (0, 7;x) < C(h* + ), (10)

where the constant C > 0 depends on Cmin, Cmax» K, Kmin, L, ||UHL2(0,T;H"(Q))'

2 .
”%”LZ(O,T), the mesh—shape regularity, and on T,

l10cull 20, 711k (2))
but not on h or 7.
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Nonlinear Model: Nonlinear Coefficients

Ramp Functions
Let o : R — [0, 1] be continuous, monoton-
ically increasing, and s.t.

Clipping Functions
For M > 0, let Tpy : R — [-M, M] be
defined

X_I:Too o(x)=0 and X_I:rroo o(x)=1. (11)

Trm(x) = max{—M, min{x, M}}. (12)
We write i = Ty(u).
Examples
Ramp Functions o(v), 7(v) Nonlinear Coefficients
Let
r(u, v) = Ao (id)o(v), (13a)
s(v; (u)a) = Bo(v)o((u)a), (13b)
and let
R(u,v) = r(u, v)(d — v), (14a)
S(v, (u)a) = s(u, v)(v — (u)a). (14b)
The earlier stability results can be used to
25 30 35 40 show that (14) are Lipschitz.
v
9/13
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Nonlinear Model: Simulation

MFEM Results
o

Nonlinear Coefficient Model
R(u,v) = r(u,v) (i —v),
S(u,v) =s(u,v) (v —(u)a),
All parameters (including A and B) as in Table 1.

where

where

r(u,v) = Ao(id)o(v),
s(u,v) = Bo({u)a) o(v).

(15a)
(15b)

v(t) and (u(t))o u(z,t),t =40 min
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Note: v(t) < vj,j¢ is enforced using a constraint operator.
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Nonlinear Model: Comparison with Linear Model

MFEM Results
o

Summary
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o(t) and (u(t))s
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Frostbite, t = 40 min

mmirostbite

o(t) and (u(t))s
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Nonlinear Model
x,t),t = 40 min

Rl{fk
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Frostbite, t = 40 min

mmirostbite

Note: v(t) < vjyjt is enforced using a constraint operator.
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MFEM Results: Comparison of MFEM and MATLAB

Simplifications: Features Retained:
v = 37 (i.e. system decoupled) Mixed BC’s (Robin and Dirichlet)
Elliptic (not parabolic) Realistic domain geometry

Constant coefficient (linear) model

Umatlab Umfem — Ymatlab

Comparison of MFEM and MATLAB Results

12/13
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Summary

Coupled PDE-ODE Model: Bioheat transfer in tissue (u) via PDE and core temperature
(v) via ODE, coupled through R, S and boundary condition a.

Energy Stability: Established energy functional E(t) = %(||u||iz+|v|2), yielding stability
bound and sup |dv/dt| < co.

A Priori Estimate: Fully discrete backward-Euler—Galerkin scheme satisfies

max{]|u(-, tn) — Ul i2(g) + V(t) = V"I} < C (K + At).

Nonlinear Extension: Introduced ramp coefficients to define r(u, v),s(v, (u)q); shows
physiologically reasonable behavior.

Simulation: Compared linear vs nonlinear dynamics; compared MFEM and MATLAB
on a simplified problem.
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