







Leonardo Molinari, Alessandro Veneziani

Rome Sept 10<sup>th</sup>, 2025





#### Clinical Background

What is Radiofrequency Ablation (RFA)?



#### Multiphysics Model

Why do we need multiphysics modeling? What physics are we including? How do we implement it?



#### **Domain Decomposition**

How do we handle multiple domains?
Why do we need Domain Decomposition?



#### Results

What did we find?



# Conclusion & Future work

How can we improve our framework?





Cardiac Arrhytmias, Radiofrequency Ablation and Motivation to Modeling



# Why do we need modeling?

Wheezing and shortness of breath





### Model overview



# Geometry

#### Idealized geometry (...for now)

- Three physical domains: Tissue, Fluid, Electrode
- Available both as *structured* and *unstructured* meshes







## Radiofrequency source

#### Quasi-static Maxwell's equation

$$\nabla \cdot (\boldsymbol{\sigma} \nabla \Phi) = 0$$
 in  $\Omega_f$ ,  $\Omega_t$ 



- Numerical implementation
  - Spatial discretization:  $Q_4$  elements
  - Linear solver: CG preconditioned with Low-Order-Refined<sup>1</sup> (LOR) coupled to AMG (PA)



t = Tissue

f = Fluid e - Electrode

### Heat Transfer

#### Pennes' bioheat equation

$$\begin{split} \rho_t c_t \frac{\partial T}{\partial t} &= \nabla \cdot (\textbf{k}_t \nabla T) + Q_m + Q_p + Q_s & \text{in } \Omega_t \\ \rho_f c_f \frac{\partial T}{\partial t} &= \nabla \cdot (\textbf{k}_f \nabla T) - \textbf{u} \cdot \nabla T & \text{in } \Omega_f \\ \rho_e c_e \frac{\partial T}{\partial t} &= \nabla \cdot (\textbf{k}_e \nabla T) & \text{in } \Omega_e \\ Q_s &= \boldsymbol{\sigma} \cdot |\textbf{E}|^2 \quad [\text{W/m}^3] \end{split}$$

$$Q_m = \text{metabolic (constant)}$$
  
 $Q_p = -w_b \rho_b c_b (T_t - T_{bp})$ 

 $T_{bp}$  constant temperature of blood perfusing the tissue

 $w_b$  is a perfusion coefficient depending on the cell viability so that  $0 < w_b(N) \le w_{b,max}$ 

#### Numerical implementation

- Spatial discretization:  $Q_2$  elements
- Time discretization: two-step third-order Singly-diagonal implicit Runge-Kutta scheme (SDIRK23)
- Linear solver: GMRES preconditioned with matrix-free Jacobi smoother (PA)

e - Electrode

### Anisotropy

Anisotropic thermo-electrical conductive properties in the tissue due to fiber microstructure

$$\boldsymbol{\sigma} = \mathbf{R} \begin{bmatrix} \sigma_f & 0 & 0 \\ 0 & \sigma_{\perp}^y & 0 \\ 0 & 0 & \sigma_{\perp}^z \end{bmatrix} \mathbf{R}^{\mathsf{T}} \qquad \qquad \mathbf{k} = \mathbf{R} \begin{bmatrix} k_f & 0 & 0 \\ 0 & k_{\perp}^y & 0 \\ 0 & 0 & k_{\perp}^z \end{bmatrix} \mathbf{R}^{\mathsf{T}}$$

$$R = R_z(\alpha) R_y(\beta) R_x(\gamma)$$





### Cellular death

Vulnerable (Unfolded)

Alive (Native)

$$N \xrightarrow{\upsilon_1} U \xrightarrow{\upsilon_2} D \xrightarrow{\text{Dead}}_{\text{(Denatured)}}$$

#### Numerical implementation

• Eigenvalue method to solve

$$\frac{dX}{dt} = \mathcal{A} X, \quad X^T = [N, U, D]^T$$
$$X = \mathbf{P} e^{\int_0^t diag(\lambda)d\tau} \mathbf{P}^{-1} \mathbf{x}(\mathbf{0})$$

#### Three-state cell-death model

$$\begin{split} \frac{dN}{dt} &= -\upsilon_1 N + \upsilon_3 U \\ \frac{dU}{dt} &= \upsilon_1 N - \upsilon_2 U - \upsilon_3 U & \text{ in } \Omega_t \\ \frac{dD}{dt} &= \upsilon_2 U \\ \upsilon_i(T) &= A_i \bar{e}^{\Delta E/RT} \\ N + U + D &= 1 \end{split}$$

$$\mathcal{A} = \begin{bmatrix} -v_1 & v_3 & 0 \\ v_1 & -(v_2 + v_3) & 0 \\ 0 & v_2 & 0 \end{bmatrix} = P \Lambda P^{-1} \qquad X_{n+1} = P e^{\Lambda \Delta t} P^{-1} X_n$$

• Symbolic evaluation of eigenpairs  $\{\Lambda, P\}$ 

### Fluid Dynamics

#### **Incompressible Navier Stokes equation**

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u}^* \cdot \nabla \mathbf{u} - \nabla \cdot \boldsymbol{\tau} + \nabla \mathbf{p} = \mathbf{f}$$
$$\nabla \cdot \mathbf{u} = 0$$

$$u^* = \sum_{i=0}^{p} (\beta_i u_{n+1-i} \cdot \nabla) u_{n+1}$$
 extrapolated velocity (semi-implicit convection)

$$au$$
 viscous stress tensor  $au = egin{cases} 
u \nabla u & \text{Stiff strain} \\ 
u (\nabla u + \nabla u^T) & \text{Viscous strain} 
\end{cases}$ 

#### Numerical implementation

ALgebraic splitting Time ADaptive solver for Incompressible Navier-Stokes (ALADINS)<sup>1</sup>

- Time discretization: BDF up to order 3
- Spatial discretization: stable pair  $Q_2 Q_1$
- Time adaptivity (Pressure correction- based)
- Algebraic system:

$$\mathcal{A} = \begin{bmatrix} \mathcal{C} & \mathcal{G} \\ \mathcal{D} \end{bmatrix}, \quad \text{with } \mathcal{C} = \frac{\alpha}{\Delta t} \mathcal{M} + \nu \mathcal{K} + \mathcal{N}(\boldsymbol{u}), \quad \mathcal{G} = -\mathcal{D}^T$$

• FGMRES preconditioned with block preconditioner  $\widehat{\mathcal{P}}$ 

### Fluid Dynamic: Preconditioner

#### Navier-Stokes **Block Preconditioner** $\hat{P}$

Algebraic splitting pressure corrected preconditioner<sup>1,2</sup>

Where we assumed:

- $\rightarrow \hat{S}$  preconditioner for the Schur Complement  $\Sigma = \mathcal{DC}^{-1}\mathcal{G}$ ,  $\hat{S} = \mathcal{D} \operatorname{diag}(\mathcal{M}_v)^{-1}\mathcal{G}$
- $\rightarrow \hat{\mathcal{C}}$  approximation to  $\mathcal{C}$ ,
- $\rightarrow \mathcal{H}_1, \mathcal{H}_2$  cheap approximation to  $\mathcal{C}^{-1}$
- $\rightarrow Q$ ,  $\mathcal{R}$  pressure correction matrices, depend on the chosen factorization method.
- **Factorization method:** High-Order Yosida (HOY)  $\mathcal{A}_{HOY} = \begin{bmatrix} \hat{\mathcal{C}} \\ \mathcal{D} \\ -\hat{\mathcal{S}} \end{bmatrix} \begin{bmatrix} I & \mathcal{C}^{-1}\mathcal{G} \\ 0 \end{bmatrix}$ (momentum preserving)

$$\mathcal{A}_{HOY} = \begin{bmatrix} \hat{\mathcal{C}} & \\ \mathcal{D} & -\hat{\mathcal{S}} \end{bmatrix} \begin{bmatrix} I & \mathcal{C}^{-1}\mathcal{G} \\ & \mathcal{Q} \end{bmatrix}$$

$$\mathcal{A} \approx \begin{bmatrix} \hat{\mathcal{C}} & \\ \mathcal{D} & -\hat{\mathcal{S}} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathcal{H}_2 \mathcal{G} \mathcal{R} \\ & \mathcal{Q} \end{bmatrix}$$

$$\begin{split} \mathcal{H}_1 &= (\frac{\alpha}{\Delta t}\mathcal{M})^{-1}, \quad \mathcal{H}_2 = \mathcal{C}^{-1} \\ \mathcal{R} &= I, \quad \mathcal{Q} = (\mathcal{D}\mathcal{H}_1\mathcal{C}\;\mathcal{H}_1\mathcal{G})^{-1}\hat{\mathcal{S}} \\ \boldsymbol{D}_k &= -\mathcal{D}(-\mathcal{H}_1\mathcal{F})^k\mathcal{G}, \quad k>0 \qquad \mathcal{F} = \nu\mathcal{K} + \mathcal{N}(\boldsymbol{u}) \end{split}$$

Pressure correction step:  $y = Q^{-1}x = \begin{cases} \hat{\delta}z_1 = D_1z_0 \\ \hat{\delta}z_2 = D_2z_1 + D_1z_0 \end{cases}$ 

Time adaptivity:

Adaptive selection of time step based on a posteriori pressure-correction based error estimator

- $\rightarrow \alpha$  Safety factor for time adaptivity
- $\rightarrow \epsilon$ : **Tolerance** for time adaptivity
- $\rightarrow z_a$  pressure correction of order q

$$\Delta t = \chi \, \Delta t_{old}$$

$$\chi = \min(\max\left(\alpha \cdot (\frac{\epsilon \, \Delta t_{old}}{\|\mathbf{z}_q\|})^{\frac{1}{q}}, \chi_{min}\right), \chi_{max})$$





# (03.) Domain Decomposition

Modeling interface between tissue, electrode and fluid domains

### Two-level segregation approach



#### 1. Multiphysics segregation

- Staggered approach for multiphysics
   (RF¹→ Fluid-dynamics →Heat transfer¹→Cell-death)
- Strang splitting for HT/CD problems  $O(\Delta t^2)$

### Two-level segregation approach



1. Robin-Robin implemented and tested for RF subproblem

 $\mathbf{u} = 0$ 

#### 1. Multiphysics segregation

Staggered approach for multiphysics
(RF¹ → Fluid-dynamics → Heat transfer¹ → Cell-death)

- 2. Substructuring by (physical) subdomains
  - Nonoverlapping domain decomposition

Based on physical domains

Dirichlet-Neumann, Robin-Robin coupling (DN, RR)<sup>1</sup>

For transmission conditions at the physical interfaces

 $\begin{aligned} \mathsf{RF} & \quad \nabla \cdot \sigma_1 \, \nabla \phi_1^{n+1} = f_1 & \text{in } \Omega_1 \\ \phi_1^{n+1} = \phi_2^n & \text{on } \Gamma_{12} \end{aligned} \\ & \quad \nabla \cdot \sigma_2 \, \nabla \phi_2^{n+1} = f_2 & \text{in } \Omega_2 \\ & \quad \sigma_2 \nabla \phi_2^{n+1} \cdot \boldsymbol{n} = \sigma_1 \nabla \phi_1^{n+1} \cdot \boldsymbol{n} & \text{on } \Gamma_{12} \end{aligned}$ 





Solvers verifications, Domain Decomposition convergence, RFA

### Solvers verification: Heat transfer

Convergence (MMS on squared domain) +

+ toy problems

Advection-diffusion

Time-dependent square plate heating





| Heat-Transfer ( $o = 2$ ) |         |             |            |             |            |
|---------------------------|---------|-------------|------------|-------------|------------|
| DOFs                      | h       | $L^2$ error | $L^2$ rate | $H^1$ error | $H^1$ rate |
| 81                        | 0.25    | 0.01445     | 0          | 0.4044      | 0          |
| 289                       | 0.125   | 0.001933    | 2.902      | 0.102       | 1.987      |
| 1089                      | 0.0625  | 0.0002451   | 2.979      | 0.02553     | 1.998      |
| 4225                      | 0.03125 | 3.075e-05   | 2.995      | 0.006383    | 2          |
| 16641                     | 0.01562 | 3.847e-06   | 2.999      | 0.001596    | 2          |









Convective cooling of sphere

### Solvers verification: RF

Convergence (MMS on squared domain) + toy problems

| RF    |         |                         |            |                        |            |  |
|-------|---------|-------------------------|------------|------------------------|------------|--|
| Dofs  | h       | $L^2$ error             | $L^2$ rate | $H^1$ error            | $H^1$ rate |  |
| 289   | 0.2686  | $2.425 \times 10^{-5}$  | 0          | 0.001126               | 0          |  |
| 1089  | 0.1343  | $7.761 \times 10^{-7}$  | 4.965      | $7.144 \times 10^{-5}$ | 3.979      |  |
| 4225  | 0.06716 | $2.443 \times 10^{-8}$  | 4.99       | $4.478 \times 10^{-6}$ | 3.996      |  |
| 16641 | 0.03358 | $8.309 \times 10^{-10}$ | 4.878      | $2.802 \times 10^{-7}$ | 3.998      |  |







### Solvers verification: Navier-Stokes

Convergence (MMS on squared domain) + toy problems

| Navier-Stokes |        |        |                          |                          |                |                |
|---------------|--------|--------|--------------------------|--------------------------|----------------|----------------|
| DOFs u        | DOFs p | h      | $L^2$ error (u)          | $L^2$ error (p)          | $L^2$ rate (u) | $L^2$ rate (p) |
| 242           | 36     | 0.2    | $1.99644 \times 10^{-2}$ | 0.110601                 | 0              | 0              |
| 882           | 121    | 0.1    | $5.26485 \times 10^{-3}$ | 0.0185581                | 1.92297        | 2.57525        |
| 3362          | 441    | 0.05   | $7.36945 \times 10^{-4}$ | 0.00379613               | 2.83676        | 2.28945        |
| 13122         | 1681   |        | $5.4351 \times 10^{-5}$  |                          | 3.76118        | 2.0196         |
| 51842         | 6561   | 0.0125 | $4.3819 \times 10^{-6}$  | $2.99535 \times 10^{-4}$ | 3.63268        | 1.64413        |









### Domain Decomposition convergence

Subiteration convergence

Dirichlet-Neumann scheme exhibits linear convergence for Heat/RF problems.



• h-refinement

Consistent results for DD convergence across different levels of **mesh refinement** For RF, RR conditions did not lead to significant improvements (but we did not analyze the optimal parameters derived form Fourier Analysis)

• p-refinement

Slower convergence rates for the DD algorithm



| h-Refinement |         |        |       |                |  |  |
|--------------|---------|--------|-------|----------------|--|--|
| Ref          | Dofs RF | Dofs H | It-RF | It-Heat        |  |  |
| 0            | 90k     | 19k    | 10    | $7.4 \pm 0.70$ |  |  |
| 1            | 673k    | 150k   | 9     | $7.4 \pm 0.52$ |  |  |
| 2            | 5M      | 1.1M   | 9     | $7.7 \pm 0.67$ |  |  |

(a) Iteration count for DD convergence ( $tol = 10^{-6}$ ) after h-refinement (uniform refinement). For heat problem, iterations taken over the first 10 timesteps. H = Heat, RF = Radio-Frequency.

| p-Refinement         |         |        |       |                 |  |  |
|----------------------|---------|--------|-------|-----------------|--|--|
| Order<br>(H-RF)      | Dofs RF | Dofs H | It-RF | It-Heat         |  |  |
| $\overline{Q_1-Q_2}$ | 13k     | 3k     | 10    | $7.5 \pm 0.53$  |  |  |
| $Q_2 - Q_4$          | 90k     | 15k    | 10    | $7.4 \pm 0.70$  |  |  |
| $Q_4 - Q_8$          | 673k    | 150k   | 15    | $12.9 \pm 2.92$ |  |  |

(b) Iteration count for DD convergence ( $tol = 10^{-6}$ ) after **p-refinement**. For heat problem, iterations taken over the first 10 timesteps. H = Heat, RF = RadioFrequency.

# Anisotropy

RF, tissue only



Electric potential

RFA, three domains



Electric field

Electric potential

Temperature

# (pseudo) RFA simulation









### Other applications

- O Different ablation sources: MWA, HIFU, Laser
- **Different ablated tissues:** Liver, Intestine, Prostate, Bone
- Erosion of bioresorbable stents



### Future plan

#### Multiphysics model

 $\sum_{k \in T} (\mathcal{R}_{\phi}, \tau \mathcal{L}_{stab}(w)),$ 

- 1.1 Fluid dynamics:
  - Strongly consistent stabilization (SUPG, GLS, VMS), and turbulence model (EFR)  $\mathcal{L}_{stab} = \begin{cases} a \cdot \nabla & SUPG \\ -a \cdot \nabla + \nu \Delta & GLS \\ -a \cdot \nabla \nu \Delta & VMS \end{cases}$
- 1.2 Heat transfer:
  - Extend tissue bioheat equation to **Non-Fourier models** (SPL, DPL)  $\rho c \frac{\partial^2 T}{\partial t^2}$ ,  $\rho c \nabla \cdot (k \frac{\partial \nabla T}{\partial t})$
- 1.3 Mechanics:
  - Develop quasi-incompressible, hyperelastic, anisotropic **model for tissue mechanics**
  - Develop **electrode-tissue contact model** (leverage **MFEM-Tribol** interface)
- Improved computational efficiency
  - High fidelity simulations: Extend PA to all solvers and enable GPU acceleration
  - Clinically-suitable simulations: investigate use of Reduced Order Modeling (ROM) techniques (libROM)
- Ultimate goal: Surgical planning/therapy optimization
  - Identification of optimality criteria
  - ROM techniques to accelerate identification of optimal solution
  - Ex-vivo and Pre-clinical Validation



FOUNDED 1836





Scan me!

Thank you!

