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 AD is often perceived as a black-box tool
— Applied at the highest possible level
— Low implementation barrier

 AD tool has to work through
— Complicated program structures
— Non-trivial object types
— Sometimes even communication layers like MPI

 Infeasible overhead in our applications even for the smallest problems
— We must balance the implementation effort with AD convenience to ensure the least overhead 

possible
— Carefully decide entry points
— Still provide a clear and concise interface for users

 GPUs make things worse 100x (underestimated guess)

Usual approach to Automatic Differentiation

⋯Constrain AD to the quadrature point level
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Finite Element Operator Decomposition
Decompose A into parallel, mesh, finite element, and geometry/physics components
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 Production codes are compositions of complicated physics
— Variety of domain experts work on parts of the code
— Multiple programming languages

 Material models lead to additional experts that only see
and work on specific parts of the code

 Enzyme allows us to still use the complex combination of
a libraries which
— May be written in a different programming language
— Can’t be modified to allow different approaches of AD 

(e.g., type overloading)
— User might be allowed to have a compiled binary, but no clearance

to compile the code himself

Why Enzyme for Automatic Differentiation?



7
LLNL-PRES-2010944

 Laghos (Lagrangian phase of an ALE Shock Hydrodynamics solver) replicated in dFEM with explicit time 
integration

 Extended implementation to support implicit time integration with automated derivatives from dFEM 
using Enzyme!

Current feature set

Laghos RK4 CFL 0.5

step 737, t = 0.8, dt = 0.0011935
Energy difference (initial vs final): 3.60e-05

dFEM Implicit Midpoint CFL 5.0

step 101, t = 0.8, dt = 0.00231807
Energy difference (initial vs final): 5.56e-05
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Comparison of ALE movement from dFEM implicit hydro vs 
Laghos explicit time integration
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 Automatic Element Matrix, Processor local Sparse Matrix and global HypreParMatrix assemble

 Automatic Partial Assembly algorithms
— Takes advantage of derivative knowledge and caches the quadrature point Jacobians as PA data
— Automatically applies PA data to function
— Enables no-overhead linearized operator transpose action (  Adjoint method)

 JIT (experimental)

WIP
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Performance. Collab with Giorgis Georgakoudis           

 GPU kernel launch latency is 5μs
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Performance. Collab with Giorgis Georgakoudis 

 GPU kernel launch latency is 5μs
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Automatic Differentiation overview in MFEM
Jacobians and derivatives of FEM operators in a user-friendly way 

Meshing Finite Elements SolversParameters Functional

 FEM decomposition

 Parameters

 Parametric nonlinear operator

 Need to differentiate at Q-points only!

(Jacobian is FEM decomposed linear operator)

 Differentiate the Q-function D with Enzyme! 
— Can mix code from different languages
— Differentiate across function calls (e.g., EOS)
— Many parallel small ADs instead of 1 big one
— Differentiate only what is necessary

MFEM + Enzyme
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