
1LLNL-PRES-2011122

Prepared by LLNL under Contract DE-AC52-07NA27344. Gabriel Pinochet-SotoLLNL/PSU, Tzanio KolevLLNL, Jean SextonLBNL

Chris VoglLLNL, Ann AlmgrenLBNL, Dylan CopelandLLNL, Aaron FisherLLNL,

September 2025

Coupling MFEM with Structured Mesh Libraries

2LLNL-PRES-2011122

• Many application codes take a structured mesh approach

• Such codes are supported by structured mesh libraries

• Interest in coupling those libraries with MFEM for various applications
• fluid-structure interaction (e.g., MFEM computes stresses on a solid within a fluid)
• thermal conduction (e.g., MFEM computes thermal conduction on a solid within a fluid)

Interest from structured mesh applications to couple with MFEM

3LLNL-PRES-2011122

• Coupling on independent domains: “S + MFEM”
• Each code solves a problem in different domains using different hardware

• example: S & MFEM solve advection problem in different parts of a rectangular domain

• Coupling on one domain: “S with MFEM”
• Each code solves a separate problem on the same domain using the same hardware

• example: S solves Euler problem, MFEM solves thermal problem, all on the unit square

Current efforts target two paradigms for coupling

S MFEM
rank 1

rank 2

rank 3

rank 4

rank 1

rank 2

rank 3

rank 4

rank 1

rank 2

rank 3

rank 4

rank 5

rank 6

rank 7

rank 8

4LLNL-PRES-2011122

AMReX is a block-structured AMR library developed out of LBNL

feature list & movie from https://amrex-codes.github.io/amrex

https://amrex-codes.github.io/amrex
https://amrex-codes.github.io/amrex
https://amrex-codes.github.io/amrex

5LLNL-PRES-2011122

AMReX+MFEM: solve ODE with “parallel” operator splitting

1. Determine whether this rank is for the AMReX or
MFEM subdomain, split global communicator,
and identify global rank to exchange with

2. Initialize either an AMReX ODE object or MFEM
ODE object with subdomain communicator

3. Enter time loop.

4. AMReX ranks request spatial locations from
MFEM ranks that then respond with field values

5. MFEM ranks request spatial locations from
AMReX ranks that then respond with field values

6. All ranks advance their subdomain solution

6LLNL-PRES-2011122

Solve 𝜕𝜕𝑡𝑡𝑦𝑦 + 𝑣⃗𝑣 ⋅ ∇𝑦𝑦 = 0 on Ω = Ω1 ⊕ Ω2 (Ω1, Ω2 being connected subdomains)

MFEM subdomain: Ω1 AMReX subdomain: Ω2

AMReX+MFEM: scalar advection solved on connected subdomains

Ω1 Ω2

Ω1

Ω2

Special thanks to Jean
for wrangling 3D vis!

7LLNL-PRES-2011122

Solve 𝜕𝜕𝑡𝑡𝑦𝑦 + 𝑣⃗𝑣 ⋅ ∇𝑦𝑦 = 0 on Ω = Ω1 ⊕ Ω2 (Ω1, Ω2 are now both disconnected)

MFEM subdomain: Ω1 AMReX subdomain: Ω2

AMReX+MFEM: scalar advection solved on disconnected subdomains

Ω1 Ω2 Ω1

Ω1

Ω1

Ω2

Ω2

8LLNL-PRES-2011122

AMReX+MFEM: FindPoints used for MFEM values requested by AMReX

1. Initialize ParMesh and FindPoints with subdomain
communicator

2. Use global communicator to receive spatial
locations requested by AMReX

3. Use FindPoints (subdomain communicator) to
interpolate MFEM values at those spatial points

4. Use global communicator to send values to AMReX

9LLNL-PRES-2011122

AMReX+MFEM: SubMesh used to determine MFEM spatial points

1. Create a SubMesh using boundary attribute flags
that indicate inflow boundaries

2. Use SubMesh elements to obtain matrix of spatial
points for MFEM to request from AMReX

10LLNL-PRES-2011122

AMReX+MFEM: SubMesh also used set values received from AMReX

1. Use global communicator to send spatial points to
AMReX

2. Use global communicator to receive AMReX values

3. Use SubMesh to set values as inflow coefficient for
advection operator object

Note that mfem::AdvectionODE implements the general “S + MFEM” paradigm

11LLNL-PRES-2011122

PISALE is an ALE code leveraging the structured AMR library SAMRAI

“The PISALE code uses an explicit time-marching Lagrange
step to advance the flow-field through a physical time step.

The optional second phase involves a modification of the grid
and a remapping of the solution to the new grid. “

“The PISALE code name comes from the acronym Pacific
Island Structured-AMR with ALE.”

“SAMRAI (Structured Adaptive Mesh Refinement Application
Infrastructure) is an object--‐oriented C++ class library
developed in the Center for Applied Scientific Computing
(CASC) at Lawrence Livermore National Laboratory (LLNL).

It provides extensive support for parallel SAMR application
development and it is designed to serve as a framework of
software components that can be shared across a diverse
range of SAMR applications.”

PISALE blurb & image from https://pisale.bitbucket.io/

SAMRAI blurb from
 https://computing.llnl.gov/projects/samrai/faq

https://pisale.bitbucket.io/
https://computing.llnl.gov/projects/samrai/faq

12LLNL-PRES-2011122

PISALE with MFEM: transfer values using custom gather / scatter.

1. Create MFEM mesh that matches PISALE grid 2. Distribute MFEM elements (likely different ranks than PISALE)

1 2

3 4

rank 1

rank 2

3. Use MPI gather to transfer values from PISALE to MFEM

I II

III IV

I II III IV

1 2

3 4

4. Use MPI scatter to transfer values from MFEM to PISALE

I II III IV

1 2

3 4

13LLNL-PRES-2011122

PISALE with MFEM: support 3-to-1 mesh with anisotropic refinement

MFEM

PISALE

14LLNL-PRES-2011122

PISALE with MFEM: mesh domain with new anisotropic refinement

1. Initial 1/3 refinement

2. Further refinement

Special thanks to Dylan for
anisotropic refinement!

15LLNL-PRES-2011122

PISALE with MFEM: Approach successful on triple-point problem

PISALE & Laghos alternate advancing the solution, which includes moving the mesh

Note that MeshOps implements the general “S with MFEM” paradigm

16LLNL-PRES-2011122

• Representing cell information as 𝐿𝐿𝑝𝑝=02 limits benefit of higher-order methods

• Developing “reconstruction” approaches as local optimization problems

𝑢𝑢𝐸𝐸 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑢𝑢∈𝑉𝑉ℎ𝑓𝑓𝐸𝐸 𝑢𝑢, {�𝑢𝑢𝐸𝐸𝑘𝑘} subject to 𝜎𝜎𝐸𝐸 𝑢𝑢 ≡ 1
𝐸𝐸 ∫𝐸𝐸 𝑢𝑢 𝑑𝑑𝑑𝑑 = �𝑢𝑢𝐸𝐸

Need for polynomial representations constructed from cell averages

𝑓𝑓𝐸𝐸 =
1
2

�
𝐸𝐸ℓ∈𝑁𝑁 𝐸𝐸

𝜎𝜎𝐸𝐸ℓ 𝑢𝑢 − �𝑢𝑢𝐸𝐸ℓ
2

𝑓𝑓𝐸𝐸 =
1
2

�
𝐸𝐸ℓ∈𝑁𝑁(𝐸𝐸)

�
𝐸𝐸∩𝐸𝐸ℓ

𝑢𝑢 𝑑𝑑𝑑𝑑 −
1
2

(�𝑢𝑢𝐸𝐸 + �𝑢𝑢𝐸𝐸ℓ)
2

Special thanks to Gabriel
for investigating methods

𝑉𝑉ℎ ≡ 𝐿𝐿𝑝𝑝=02

𝑉𝑉ℎ ≡ 𝐿𝐿𝑝𝑝=12 𝑉𝑉ℎ ≡ 𝐿𝐿𝑝𝑝=32

17LLNL-PRES-2011122

“Need” for automatic fetching of third-party library dependencies

Configure MFEM with FETCH_TPLS flag

MFEM build step will
fetch, configure, and

build hypre

MFEM build will also fetch & build METIS

• same cmake build type used for all TPLs

• GSLIB support under review

• other TPLs to be added as needed

https://github.com/mfem/mfem/pull/5001

18LLNL-PRES-2011122

• Code Availability
• AMReX + MFEM: website here, contact me for demo code
• PISALE with MFEM: planned SAMRAI transfer miniapp
• Reconstruction: miniapp under development
• TPL fetching: hypre and METIS in master & GSLIB in PR

• Big thank you to all the collaborators
• AMReX + MFEM: Tzanio, Jean, and Ann
• PISALE with MFEM: Dylan and Aaron
• Reconstruction: Gabriel

Work funded by the US Department of Energy grant DE-SC0024728

Summary and Acknowledgements

https://amrex-codes.github.io/mfem-amrex/
https://github.com/mfem/mfem/pull/4905
https://github.com/mfem/mfem/pull/5001

	Coupling MFEM with Structured Mesh Libraries
	Interest from structured mesh applications to couple with MFEM
	Current efforts target two paradigms for coupling
	AMReX is a block-structured AMR library developed out of LBNL
	AMReX+MFEM: solve ODE with “parallel” operator splitting
	AMReX+MFEM: scalar advection solved on connected subdomains
	AMReX+MFEM: scalar advection solved on disconnected subdomains
	AMReX+MFEM: FindPoints used for MFEM values requested by AMReX
	AMReX+MFEM: SubMesh used to determine MFEM spatial points
	AMReX+MFEM: SubMesh also used set values received from AMReX
	PISALE is an ALE code leveraging the structured AMR library SAMRAI
	PISALE with MFEM: transfer values using custom gather / scatter.
	PISALE with MFEM: support 3-to-1 mesh with anisotropic refinement
	PISALE with MFEM: mesh domain with new anisotropic refinement
	PISALE with MFEM: Approach successful on triple-point problem
	Need for polynomial representations constructed from cell averages
	“Need” for automatic fetching of third-party library dependencies
	Summary and Acknowledgements

