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Motivation

▪ Computing extrema of high-order functions is not trivial.

Cubic function for the determinant of the Jacobian for a quadratic element.

▪ Sampling is expensive and not robust.

GLL quadrature points associated with a 26th 
order integration rule also fails to detect 

negative .𝚍𝚎𝚝(𝙹)

▪ Bernstein bases give us rather loose bounds. The minimum 
bound estimate for  starts at -0.42 here.𝚍𝚎𝚝(𝙹) Minimum  estimated using 

Bernstein coefficients.
𝚍𝚎𝚝(𝙹)
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Proposed Solution

▪ We construct piecewise linear envelope around a given function using a relatively cheap and 
robust technique with user-tunable compactness.

Piecewise linear bounds for a high-order function on a quadrilateral and triangle. Bounding box around a quad.

▪ Based on technique developed by James Lottes in findpts/gslib.
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High-Order Function Representation

u(r) =
N

∑
i=1

uiϕi(r)

ϕi(r)

4th-order Lagrange bases on N=5 GLL nodes. 4th-order function defined using Lagrange bases
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Bounding a High-Order Function

ϕ
i,η,q

(r) ≤ ϕi(r) ≤ ϕi,η,q(r)

q
ij

:= ϕ
i
(ηj) q̄ij := ϕ̄i(ηj)
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▪ Use piecewise linear bounds of the bases to bound the function.

u ≤ u ≤ u

u(r) =
N

∑
i=1

uiϕi(r)

Cost is 𝒪(N ⋅ M )

ū(ηj) =
N

∑
i=1

max{uiqij
, uiq̄ij}

u(ηj) =
N

∑
i=1

min{uiqij
, uiq̄ij}
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Generalization of the Bounding Approach

▪ Works for different bases.

u(r) =
N

∑
i=1

N

∑
j=1

uij ϕj(s) ϕi(r)

u(r) =
N

∑
i=1

N

∑
j=1

uij ϕj(s)

vi

ϕi(r)

vi ∈ [ vi, vi]

Cost is 𝒪(ND ⋅ M + N ⋅ MD) ≈ 𝒪(ND+1)

▪ Works for different element types in higher 
dimensions.

▪ Lower compute cost for tensor-product 
bases:
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Computing Piecewise Linear Bounds of Bases

▪ Simple numerical recipe using bases and their derivatives.

NGLL = 4, MCheb = 8NGLL = 4, MCheb = 5

General Field Evaluation in High-Order Meshes on GPUs, Computers & Fluids (2025).
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Computing Piecewise Linear Bounds of Bases

▪ Optimization-based approach 

▪ Works for any number of control points

▪ Run offline once and store the bounding 
matrices for ( ) pairs. N, M

A method for bounding high-order finite element functions: Applications to mesh validity and bounds-
preserving limiters, arXiv: 2504.11688.

NGLL = 5, Mopt = 6NGLL = 5, Mopt = 4
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Effectiveness of Bounding

▪ Linear fit offset to increase effectiveness 

▪ User tunable compactness

M=4 M=6 M=10
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Determining Mesh Validity - 1D Example

Piecewise linear bounds, N = 5,M = 6
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Determining Mesh Validity - 2D Example

Piecewise linear bounds on the Jacobian determinant of a 2D quadrilateral element, 
.p𝚖𝚎𝚜𝚑 = 2, p𝚍𝚎𝚝(J) = 3
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Determining Mesh Validity - 2D Example

Recursion based on the piecewise linear bounds on the Jacobian determinant to determine 
element validity [ ].N = 4, M = 4
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Determining Mesh Validity in 2D - Comparison 
with the Bernstein Bases
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Interface in MFEM
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𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚖𝚎𝚜𝚑𝚒𝚗𝚐/𝚖𝚎𝚜𝚑 − 𝚋𝚘𝚞𝚗𝚍𝚒𝚗𝚐 − 𝚋𝚘𝚡𝚎𝚜
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𝚖𝚒𝚗𝚒𝚊𝚙𝚙𝚜/𝚝𝚘𝚘𝚕𝚜/𝚐𝚛𝚒𝚍𝚏𝚞𝚗𝚌𝚝𝚒𝚘𝚗 − 𝚋𝚘𝚞𝚗𝚍𝚜
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Recent Developments in High-Order Mesh Optimization
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Mesh Quality Improvement with TMOP

2019 2020 2021 2022 2023 2024

The target-matrix optimization paradigm for 
high-order meshes, SISC.

Simulation-driven optimization 
(mesh optimization + node limiting) 
SIAM IMR and Computers & Fluids. 

Simulation-driven hr-adaptivity, 
Engineering with Computers.

Mesh fitting for conformal shape optimization, 
CADJ.
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TMOP on GPUs, JCP.Adaptive surface fitting, IMR.

Mesh rp-adaptivity, 
IMR.

Asymptotic analysis of 
compound metrics, 

IMR.

Mesh optimization 
with node limiting for 
shape optimization, 

SMO.
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Guaranteeing Mesh Validity

4th order mesh for a turbine blade.

.p𝚖𝚎𝚜𝚑 = 4, p𝚍𝚎𝚝(J) = 7, N1D = 8

r-adaptivity ensures elements 
are valid at quadrature points but 

not necessarily continuously.

r-adaptivity with a guaranteed 
valid mesh via bounds on the 
determinant of the Jacobian. 
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Mesh Untangling with a Shifted-Barrier Metric

Tangled mesh Optimized ( )p = 1 Optimized ( )p = 2 Optimized ( )p = 3

μ(T ) =
μ̃(T )

2(τ − τb)

τb = {τ − ϵ if τ ≤ 0
0 otherwise
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Tangential Relaxation on Curved Boundaries

Quadratic mesh untangled and 
optimized with tangential relaxation

r-adaptivity with tangential relaxation for 
a 3D mesh.

▪ Tangential relaxation enabled by closest point projection on surface meshes via a recent 
extension of FindPointsGSLIB.
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Tangential Relaxation on Curved Interfaces

Tangential relaxation for volume 
fraction-based interface
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PDE-Constrained Optimization

▪ Novel technique to improve mesh quality and PDE solution accuracy.

▪  based on TMOP for mesh quality

▪  is the error estimator, e.g., 

▪ Adjoint sensitivity analysis used to compute the implicit dependency of the objective: 

▪ Algebraic approach extends to any PDE with a well-defined Adjoint operator  

F(x) = Fμ
⏟

𝚖𝚎𝚜𝚑 𝚚𝚞𝚊𝚕𝚒𝚝𝚢

+ α
⏟

𝚠𝚎𝚒𝚐𝚑𝚝

Fp(u(x), x)

𝙴𝚛𝚛𝚘𝚛 𝚜𝚞𝚛𝚛𝚘𝚐𝚊𝚝𝚎

, s.t. ℛP(u)

𝙿𝙳𝙴 𝚛𝚎𝚜𝚒𝚍𝚞𝚊𝚕

= 0

Fμ

Fp Fp(u(x), x) = ∑
e

∫Ωe

(ue − ūe)2 dΩe

dF
dx

=
∂F
∂x⏟

𝚎𝚡𝚙𝚕𝚒𝚌𝚒𝚝

+
∂F
∂u

∂u
∂x

𝚒𝚖𝚙𝚕𝚒𝚌𝚒𝚝

=
∂Fμ

∂x
+ α

∂FP

∂x
+ α

∂FP

∂u
∂u
∂x

PDE-Constrained High-Order Mesh Optimization, arXiv: 2507.01917.
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PDE-Constrained Optimization - Poisson

Original mesh Fp(u(x), x) = ∑
e

∫Ωe
(ue − ūe)2 dΩe Fp(u(x), x) = ∫Ω

(∇u − Π∇u)2 dΩ FP(x, u(x)) = − ∫Ω
u ⋅ f dΩ



LLNL-PRES-2011018

PDE-Constrained Optimization - Linear elasticity
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Other Updates

▪ Automatic differentiation for mesh quality metrics.

Uniform periodic mesh adapted to a sizing function.

▪ -adaptivity for periodic meshes.r
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Summary & Future Work

▪ Method for bounding high-order functions that 
supports different element types and bases. 

▪ Exploring ways to use it for remap

mfem.org

Bounds preserving 
limiting for advection.

▪ High-order mesh r-adaptivity with guaranteed 
mesh validity, tangential relaxation for curved 
boundaries, and PDE-constrained optimization 

▪ Tangential relaxation for curved interfaces 

▪ Automatic differentiation for PDE-constrained 
optimization
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