A Method for Bounding High-Order Functions + Recent Developments in High-Order Mesh Optimization

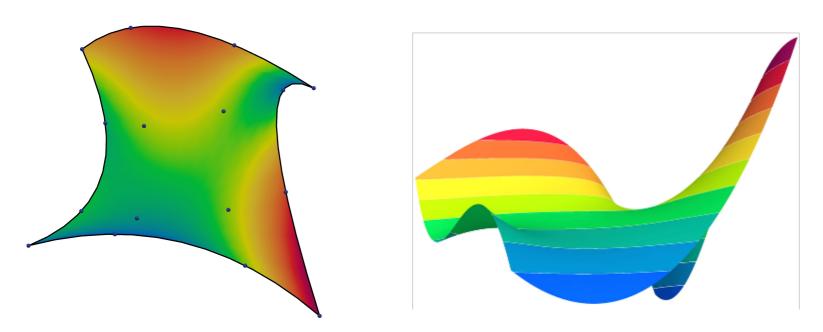
A Method for Bounding High-Order Finite Element Functions. arXiv:2504.11688 PDE-Constrained High-Order Mesh Optimization: arXiv:2507.01917

Ketan Mittal (Bounding) Tarik Dzanic, Tzanio Kolev

(Meshing) Veselin Dobrev, Pat Knupp, Boyan Lazarov, Mathias Schmidt, Vladimir Tomov, Tzanio Kolev

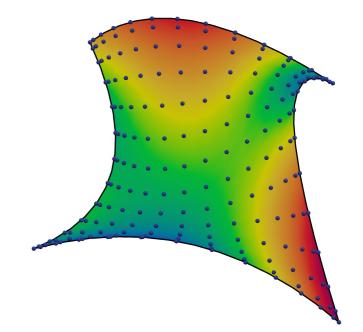
Motivation

Computing extrema of high-order functions is not trivial.

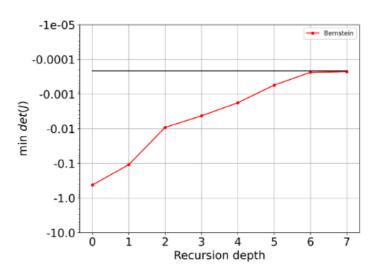


Cubic function for the determinant of the Jacobian for a quadratic element.

- Sampling is expensive and not robust.
- Bernstein bases give us rather loose bounds. The minimum bound estimate for det(J) starts at -0.42 here.



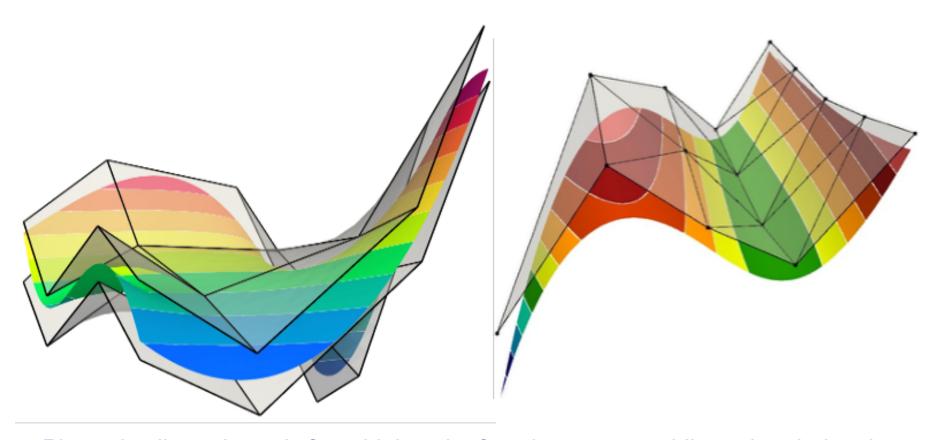
GLL quadrature points associated with a 26th order integration rule also fails to detect negative det(J).

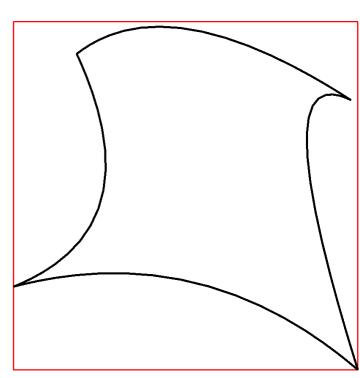


Minimum det(J) estimated using Bernstein coefficients.

Proposed Solution

- We construct piecewise linear envelope around a given function using a relatively cheap and robust technique with user-tunable compactness.
 - Based on technique developed by James Lottes in findpts/gslib.

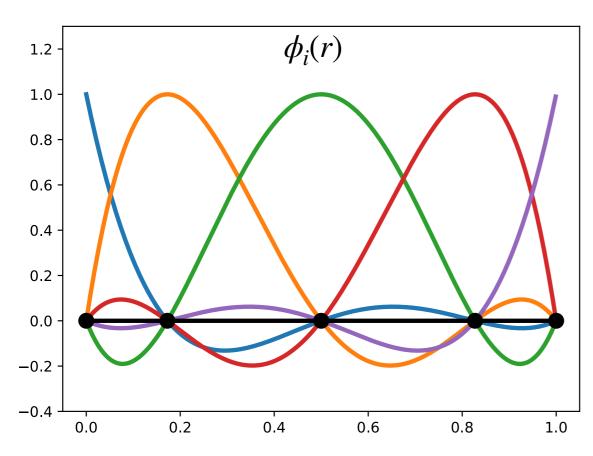




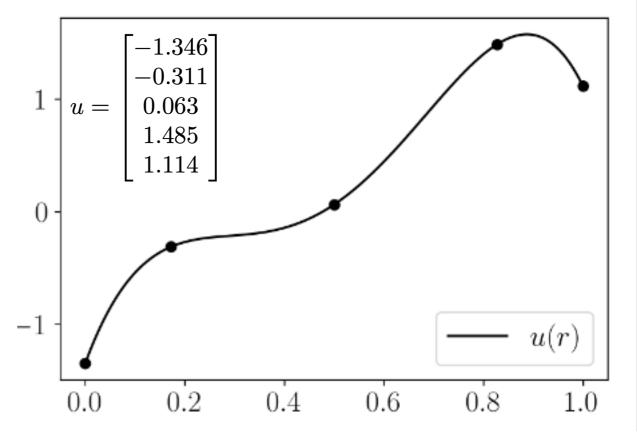
Bounding box around a quad.

High-Order Function Representation

$$u(r) = \sum_{i=1}^{N} u_i \phi_i(r)$$



4th-order Lagrange bases on N=5 GLL nodes.



4th-order function defined using Lagrange bases

Bounding a High-Order Function

Use piecewise linear bounds of the bases to bound the function.

$$\underline{\phi}_{i,\eta,\mathbf{q}}(r) \leq \phi_i(r) \leq \overline{\phi}_{i,\eta,\mathbf{q}}(r)$$

$$\underline{q}_{ij} := \underline{\phi}_i(\eta_j) \qquad \bar{q}_{ij} := \bar{\phi}_i(\eta_j)$$

$$u(r) = \sum_{i=1}^{N} u_i \phi_i(r)$$

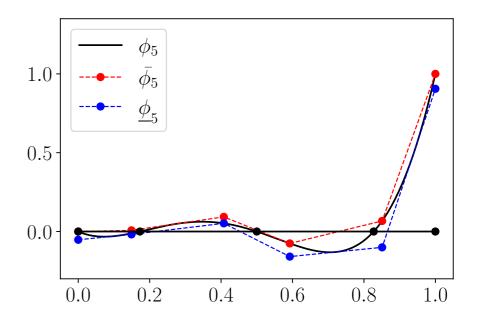
$$\bar{u}(\eta_j) = \sum_{i=1}^N \max\{u_i \underline{q}_{ij}, u_i \bar{q}_{ij}\}$$

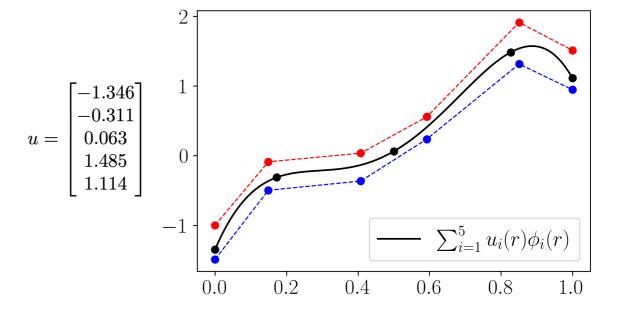
$$\underline{u}(\eta_j) = \sum_{i=1}^N \min\{u_i \underline{q}_{ij}, u_i \bar{q}_{ij}\}$$

$$\underline{u}(\eta_j) = \sum_{i=1}^N \min\{u_i \underline{q}_{ij}, u_i \bar{q}_{ij}\}$$

$$\underline{u} \le u \le \overline{u}$$

Cost is $\mathcal{O}(N \cdot M)$





Generalization of the Bounding Approach

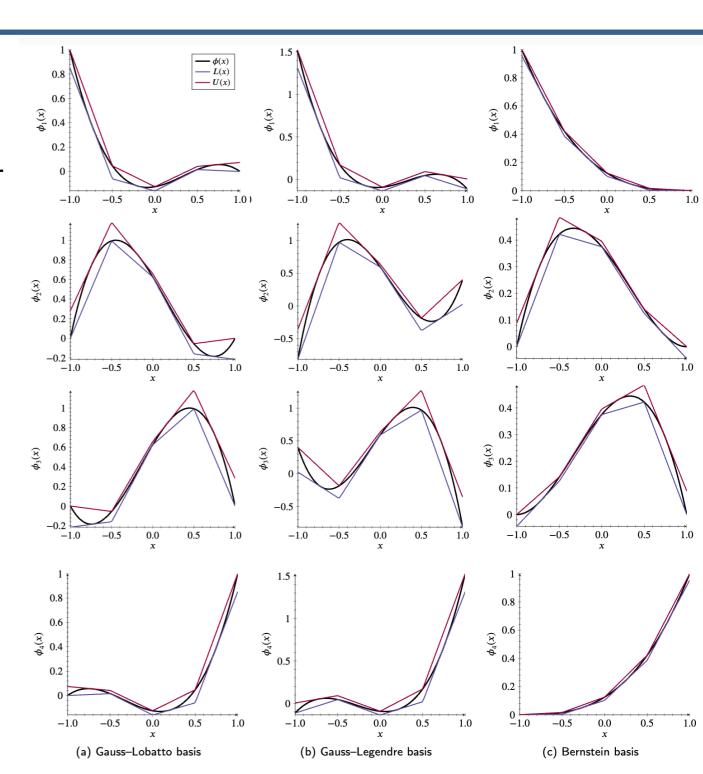
- Works for different bases.
- Works for different element types in higher dimensions.
- Lower compute cost for tensor-product bases:

$$u(r) = \sum_{i=1}^{N} \sum_{j=1}^{N} u_{ij} \ \phi_{j}(s) \ \phi_{i}(r)$$

$$u(r) = \sum_{i=1}^{N} \sum_{j=1}^{N} u_{ij} \ \phi_{j}(s) \ \phi_{i}(r)$$

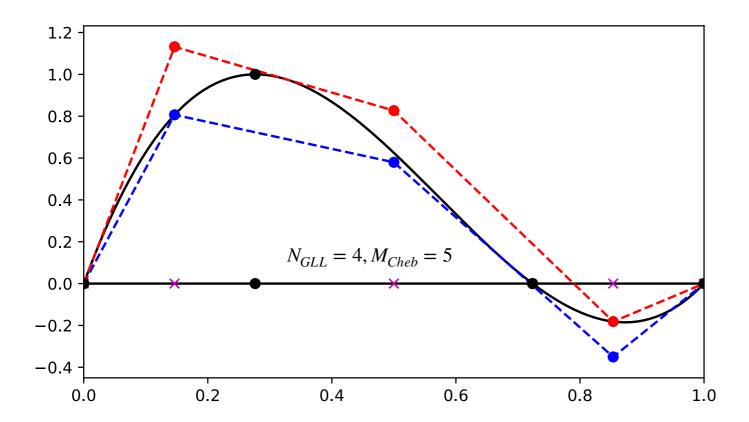
$$v_{i} \in [\underline{v}_{i}, \overline{v}_{i}]$$

Cost is
$$\mathcal{O}(N^D \cdot M + N \cdot M^D) \approx \mathcal{O}(N^{D+1})$$



Computing Piecewise Linear Bounds of Bases

Simple numerical recipe using bases and their derivatives.

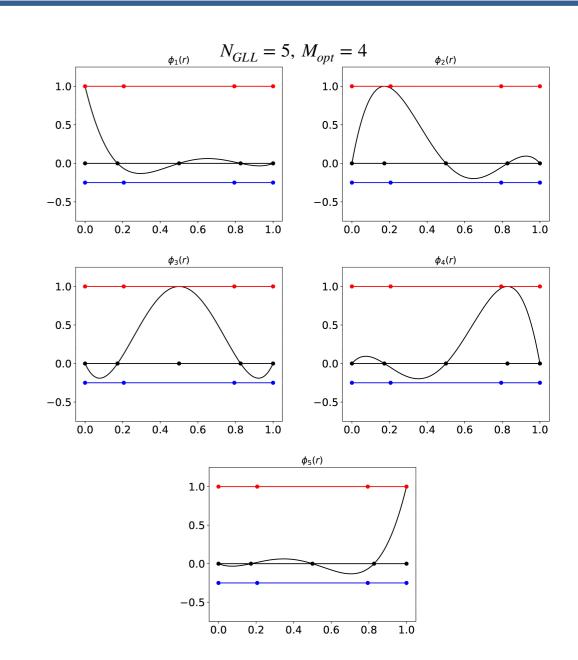


$\overline{N_{ m GLL}}$	$M_{ m Cheb}$	$M_{ m GL+End}$	$M_{ m GLL}$
3	4	4	6
4	7	6	9
5	9	7	12
6	10	8	15
7	12	9	18
8	14	11	21
9	16	12	23
10	17	13	26

General Field Evaluation in High-Order Meshes on GPUs, Computers & Fluids (2025).

Computing Piecewise Linear Bounds of Bases

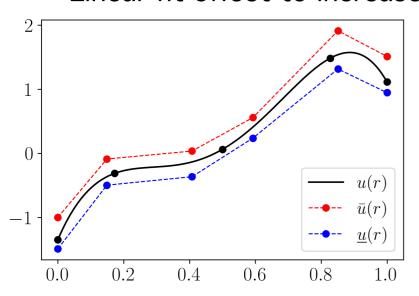
- Optimization-based approach
 - Works for any number of control points
 - Run offline once and store the bounding matrices for (N, M) pairs.

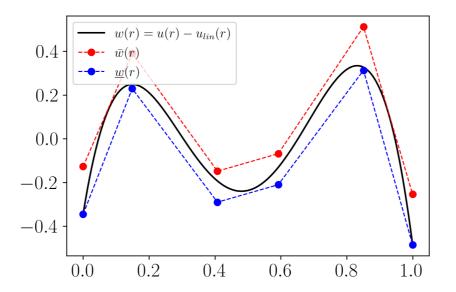


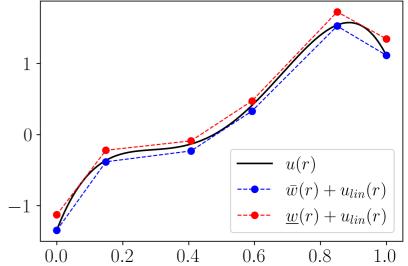
A method for bounding high-order finite element functions: Applications to mesh validity and bounds-preserving limiters, arXiv: 2504.11688.

Effectiveness of Bounding

Linear fit offset to increase effectiveness

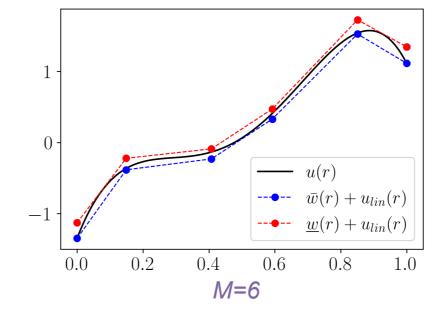


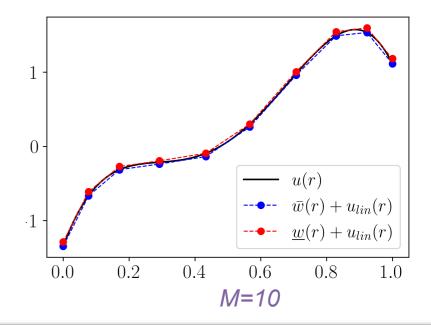




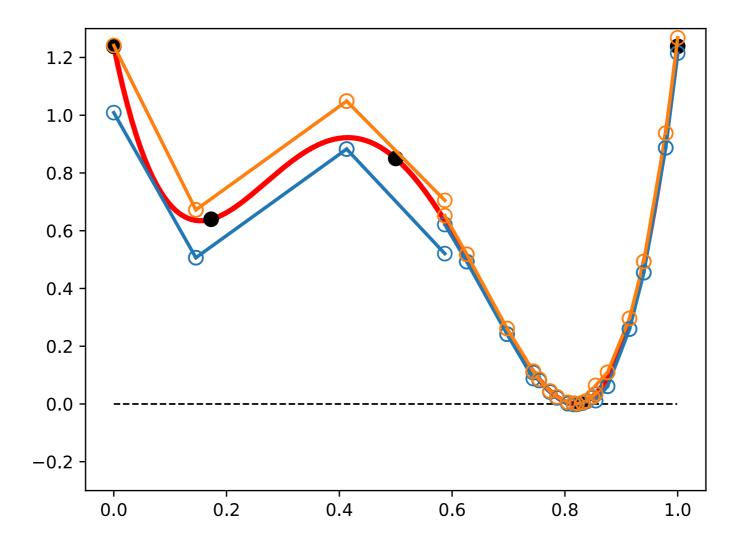
User tunable compactness





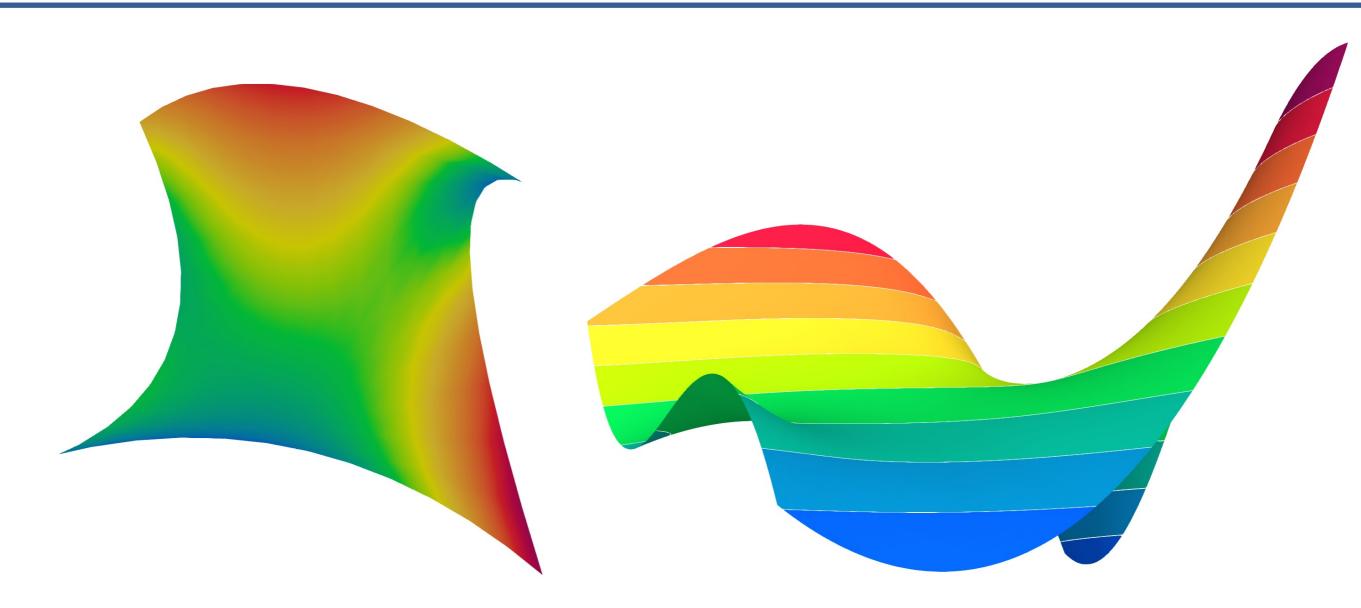


Determining Mesh Validity - 1D Example



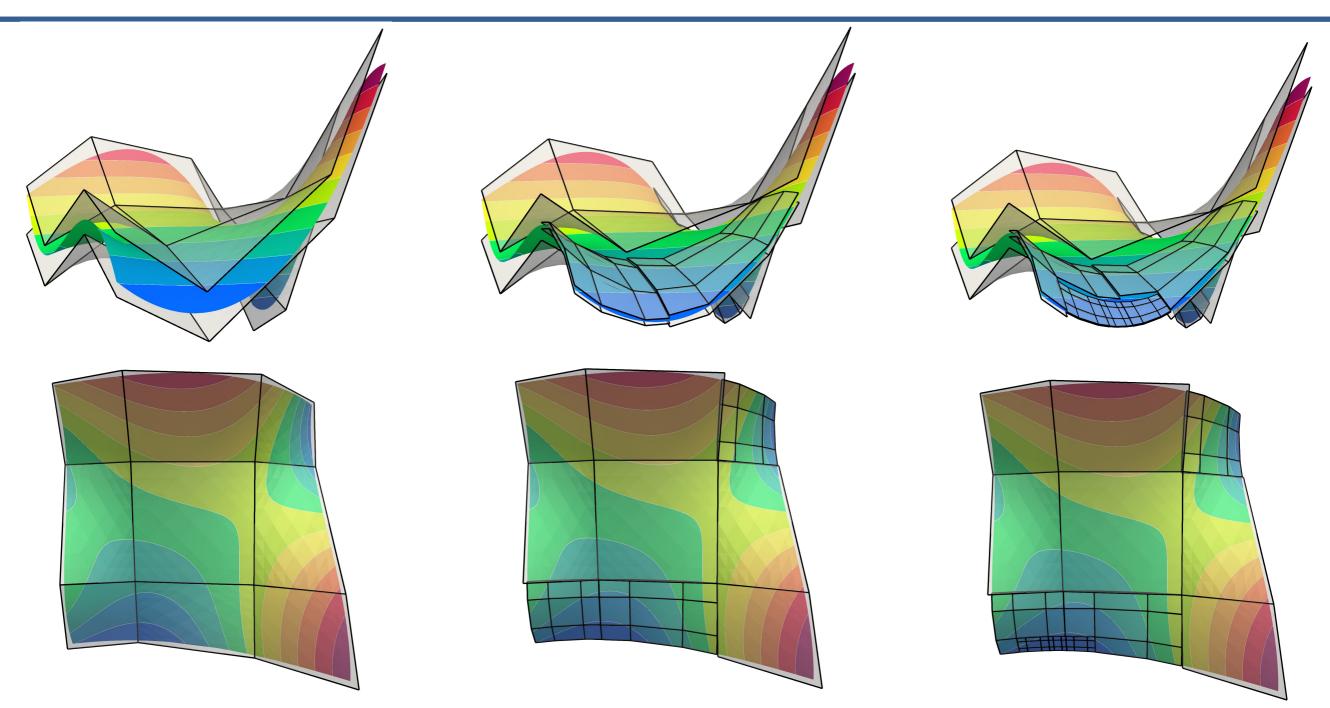
Piecewise linear bounds, N = 5, M = 6

Determining Mesh Validity - 2D Example



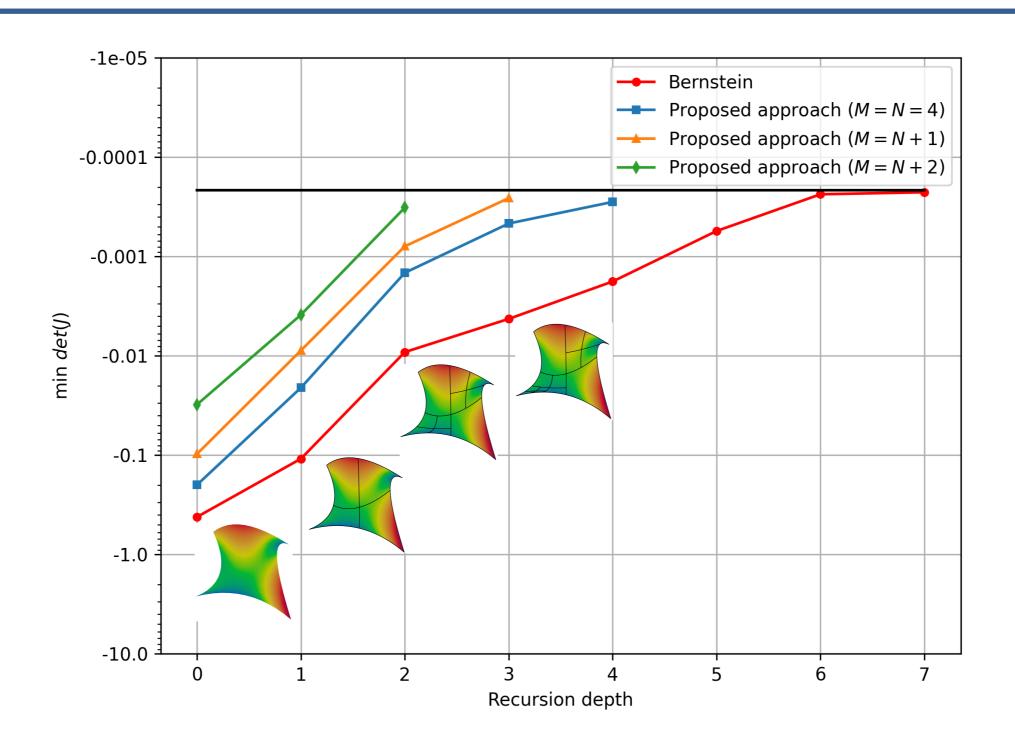
Piecewise linear bounds on the Jacobian determinant of a 2D quadrilateral element, $p_{\rm mesh}=2, p_{\det(J)}=3.$

Determining Mesh Validity - 2D Example



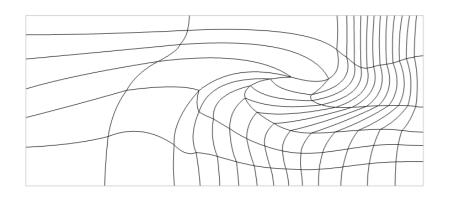
Recursion based on the piecewise linear bounds on the Jacobian determinant to determine element validity [N = 4, M = 4].

Determining Mesh Validity in 2D - Comparison with the Bernstein Bases

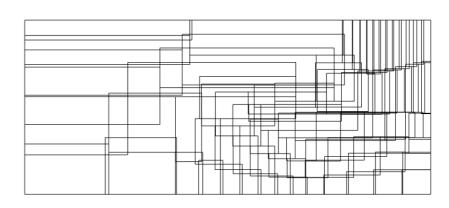


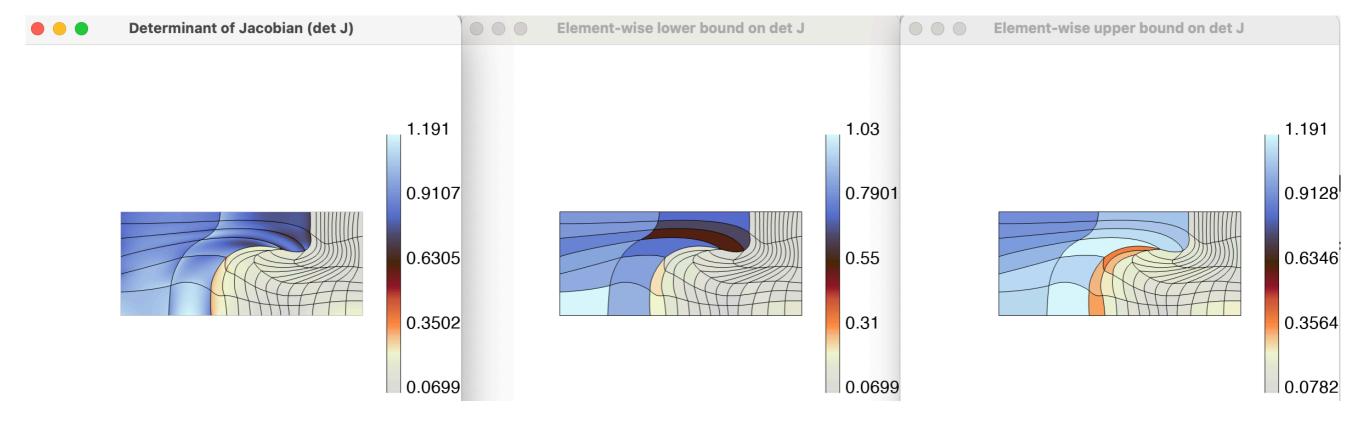
Interface in MFEM

miniapps/meshing/mesh — bounding — boxes

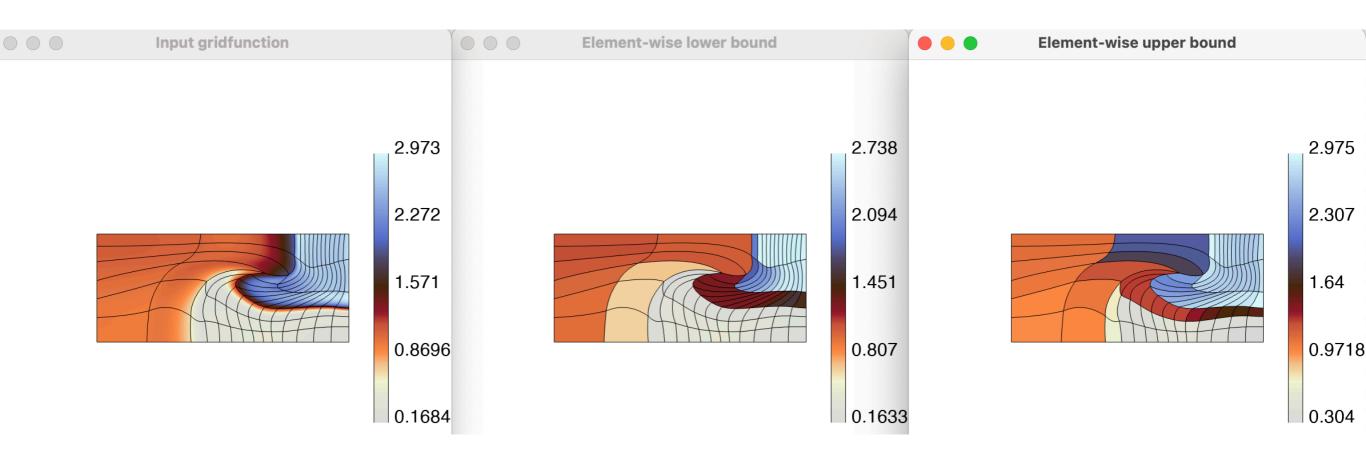


```
GridFunction ** nodes *= * pmesh.GetNodes();
Vector * lower, * upper;
nodes -> GetElementBounds(lower, * upper);
```



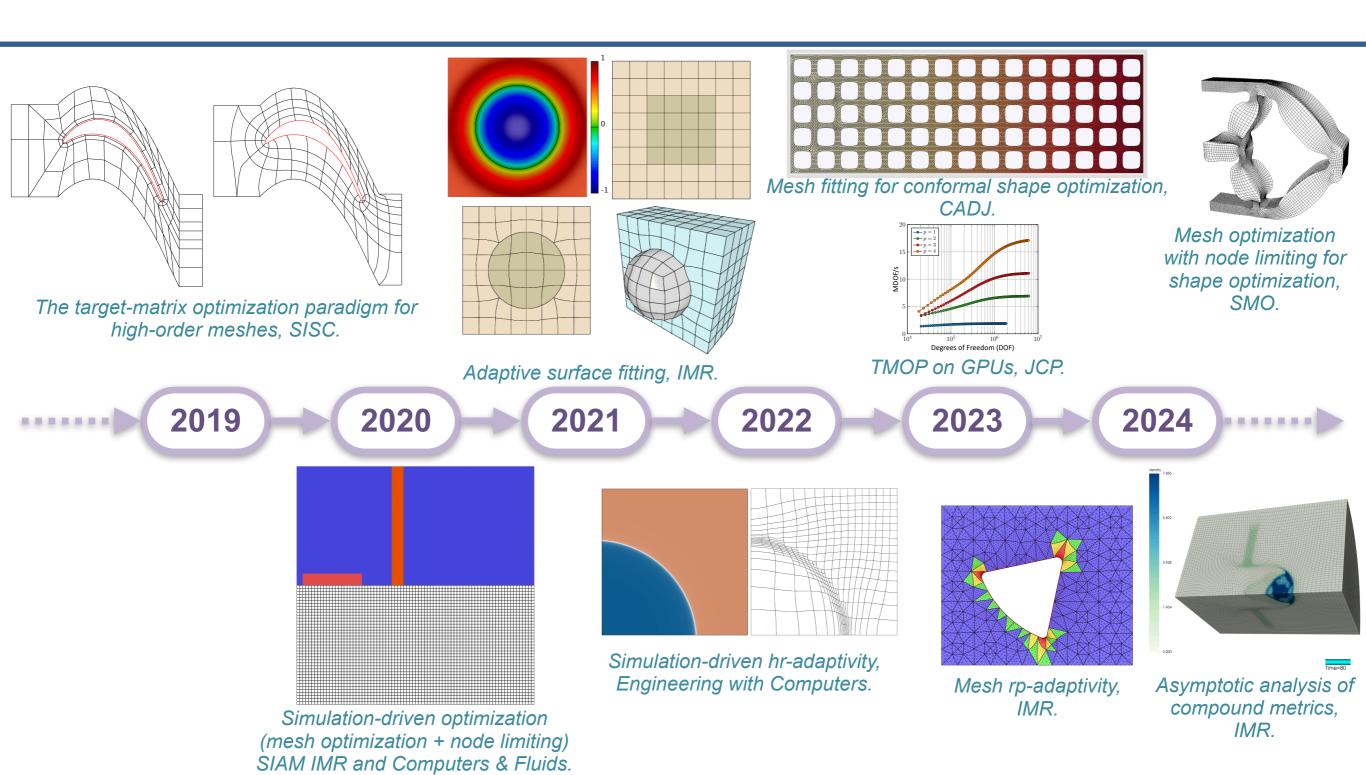


miniapps/tools/gridfunction — bounds

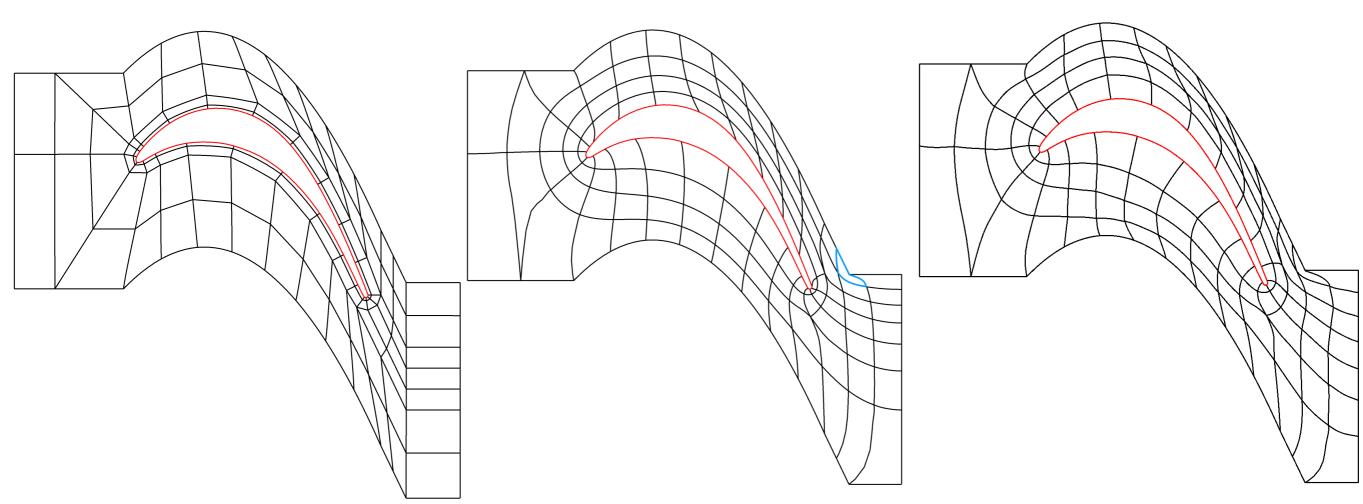


Recent Developments in High-Order Mesh Optimization

Mesh Quality Improvement with TMOP



Guaranteeing Mesh Validity



4th order mesh for a turbine blade.

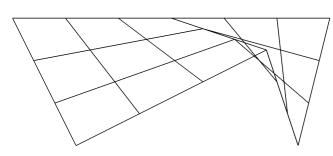
 $p_{\text{mesh}} = 4, p_{\det(J)} = 7, N_{1D} = 8.$

r-adaptivity ensures elements are valid at quadrature points but not necessarily continuously. r-adaptivity with a guaranteed valid mesh via bounds on the determinant of the Jacobian.

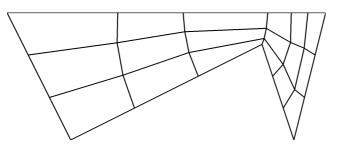
Mesh Untangling with a Shifted-Barrier Metric

$$\mu(T) = \frac{\tilde{\mu}(T)}{2(\tau - \tau_b)}$$

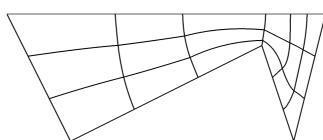
$$\tau_b = \begin{cases} \underline{\tau} - \epsilon & \text{if } \underline{\tau} \le 0\\ 0 & \text{otherwise} \end{cases}$$



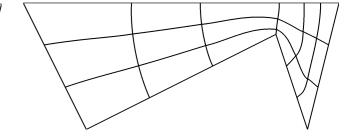
Tangled mesh



Optimized (p = 1)



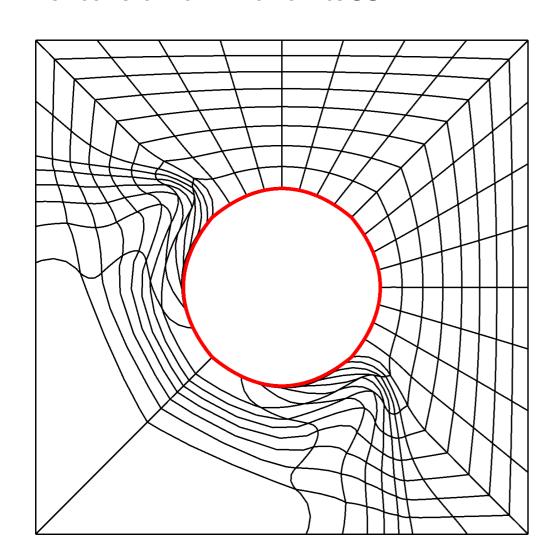
Optimized (p = 2)



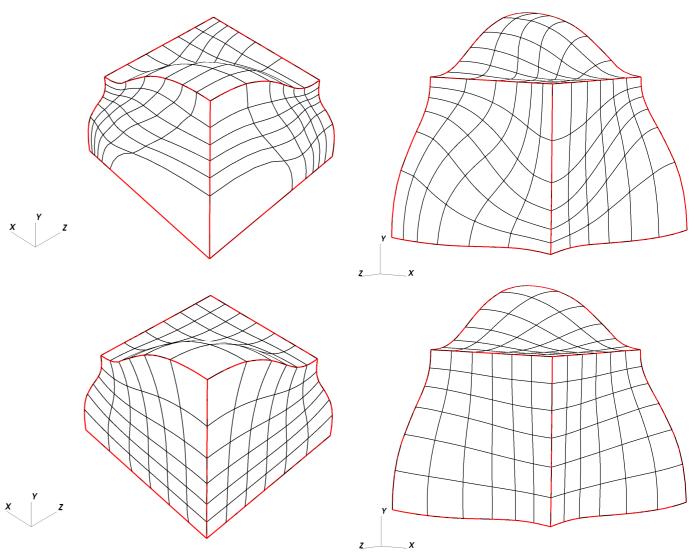
Optimized (p = 3)

Tangential Relaxation on Curved Boundaries

 Tangential relaxation enabled by closest point projection on surface meshes via a recent extension of FindPointsGSLIB.

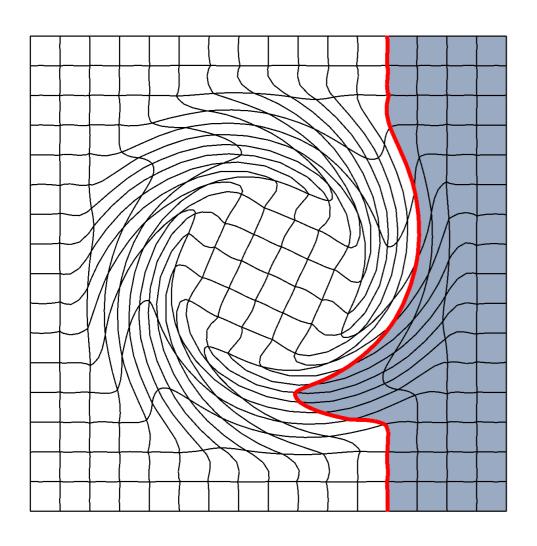


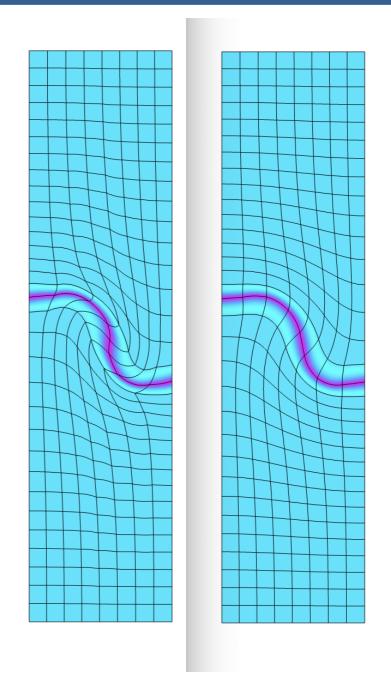
Quadratic mesh untangled and optimized with tangential relaxation



r-adaptivity with tangential relaxation for a 3D mesh.

Tangential Relaxation on Curved Interfaces





Tangential relaxation for volume fraction-based interface

PDE-Constrained Optimization

Novel technique to improve mesh quality and PDE solution accuracy.

$$F(x) = \underbrace{F_{\mu}}_{\text{mesh quality}} + \underbrace{\alpha}_{\text{weight}} \underbrace{F_{p}(u(x), x)}_{\text{Error surrogate}} , \quad \text{S.t.} \quad \underbrace{\mathcal{R}_{P}(u)}_{\text{PDE residual}} = 0$$

- F_{μ} based on TMOP for mesh quality
- F_p is the error estimator, e.g., $F_p(u(x), x) = \sum_e \int_{\Omega^e} (u_e \bar{u}_e)^2 d\Omega^e$
- Adjoint sensitivity analysis used to compute the implicit dependency of the objective:

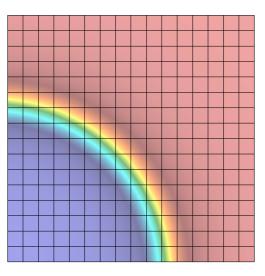
$$\frac{dF}{dx} = \underbrace{\frac{\partial F}{\partial x}}_{\text{explicit}} + \underbrace{\frac{\partial F}{\partial u}\frac{\partial u}{\partial x}}_{\text{implicit}} = \underbrace{\frac{\partial F_{\mu}}{\partial x}}_{\text{act}} + \alpha \underbrace{\frac{\partial F_{P}}{\partial x}}_{\text{dx}} + \alpha \underbrace{\frac{\partial F_{P}}{\partial u}\frac{\partial u}{\partial x}}_{\text{dx}}$$

Algebraic approach extends to any PDE with a well-defined Adjoint operator

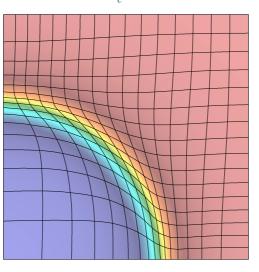
PDE-Constrained High-Order Mesh Optimization, arXiv: 2507.01917.

PDE-Constrained Optimization - Poisson

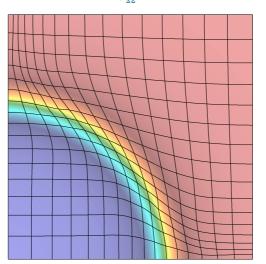
Original mesh



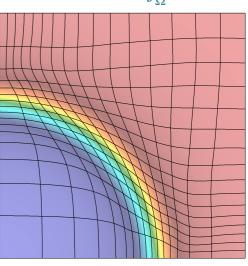
$$F_p(u(\mathbf{x}), \mathbf{x}) = \sum_e \int_{\Omega^e} (u_e - \bar{u}_e)^2 d\Omega^e$$

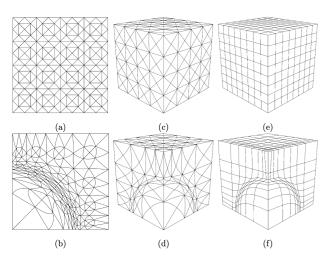


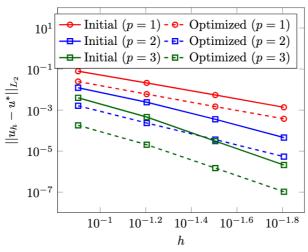
$$F_p(u(\mathbf{x}), \mathbf{x}) = \int_{\Omega} (\nabla u - \Pi \nabla u)^2 d\Omega$$

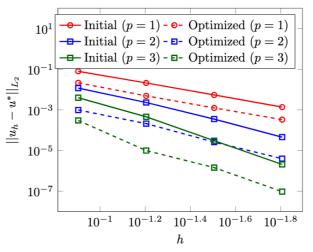


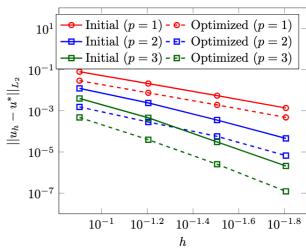
$$F_P(x, u(x)) = -\int_{\Omega} u \cdot f \ d\Omega$$



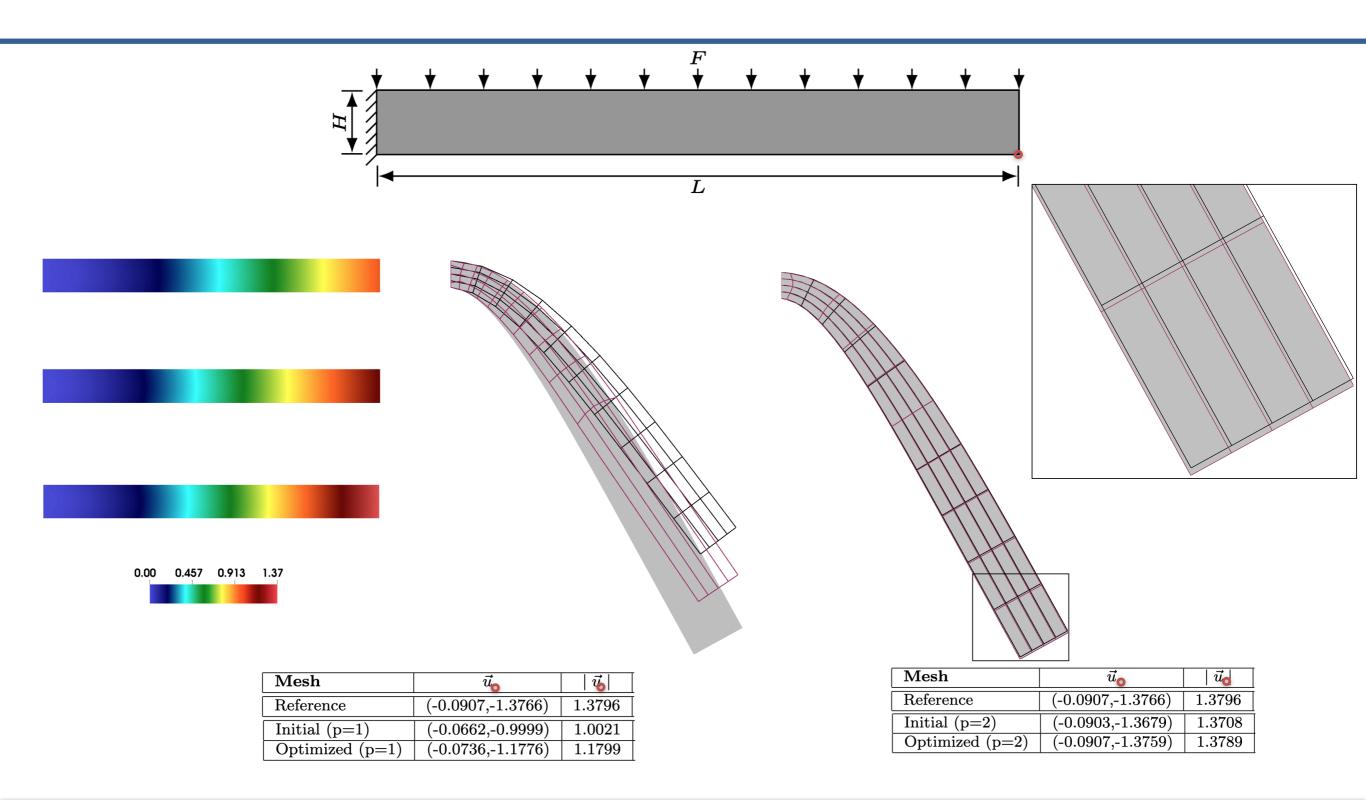






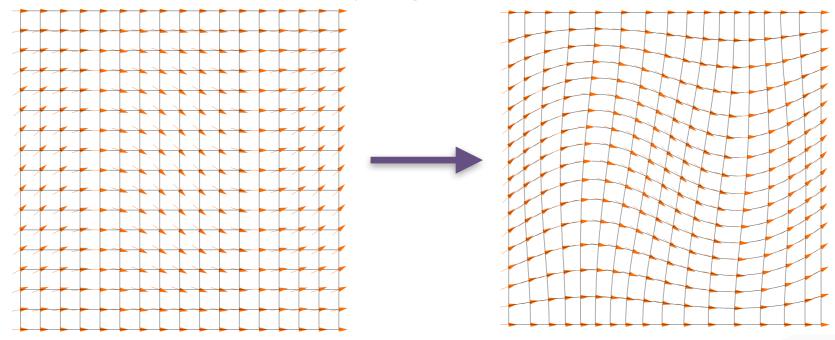


PDE-Constrained Optimization - Linear elasticity

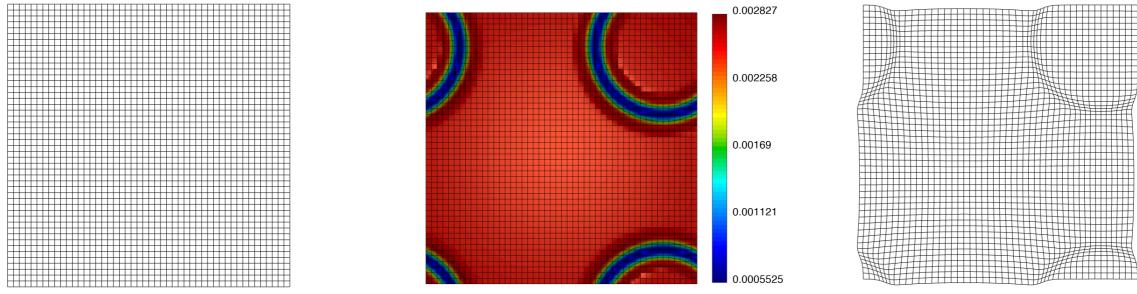


Other Updates

Automatic differentiation for mesh quality metrics.



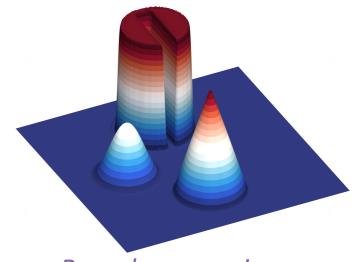
• *r*-adaptivity for periodic meshes.



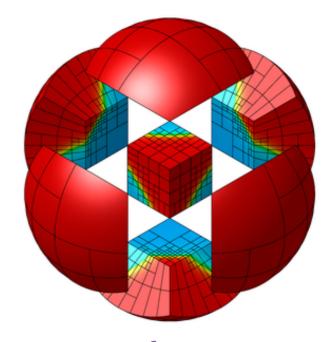
Uniform periodic mesh adapted to a sizing function.

Summary & Future Work

- Method for bounding high-order functions that supports different element types and bases.
 - Exploring ways to use it for remap
- High-order mesh r-adaptivity with guaranteed mesh validity, tangential relaxation for curved boundaries, and PDE-constrained optimization
 - Tangential relaxation for curved interfaces
 - Automatic differentiation for PDE-constrained optimization



Bounds preserving limiting for advection.



mfem.org

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.