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Motivation – PDE-constrained optimization with bound constraints

Example: inversion (from surface flow
observations) for the non-negative ice
sheet basal friction field.

Challenge: inequality constraints lead to
computational challenges via
complementarity in the KKT conditions.

Goal: develop a scalable computational
framework for such PDE- and
bound-constrained optimization problems.

Picture from: T. Hartland, G. Stadler, K. Liegeois, M.
Perego, and N. Petra. “Hierarchical off-diagonal
low-rank approximation of Hessians in inverse problems,
with application to ice sheet model initialization”,
Inverse Problems, 2023.
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PDE- and bound-constrained optimization problem structure

General problem statement

min
(u,ρ)
J (u, ρ) := Jmisfit(u) + Jreg(ρ)

such that
ρ(t, x) ≥ ρ`(t, x), on [0,T ]× Ω and
r(u, ρ) = 0, in (0,T )× Ω

Notation:
1. u = u(t, x), ρ = ρ(t, x), the state and parameter (respectively).
2. Ω – spatial domain, [0,T ] – time domain.
3. ρ` – lower-bound constraint, r – PDE residual.
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PDE- and bound-constrained optimization common approach

General problem common “reduced-space” approach

min
β
J (β) := J (u(ρ), ρ), ρ = exp(β) + ρ`

where u(ρ) defined implicitly by r(u(ρ), ρ) = 0

Pros and cons

+ The optimization problem is a reduced unconstrained problem and so simple
optimization methods (Newton, Gauss-Newton, etc) are applicable.

- Each objective evaluation requires a PDE-solve.
- The reparametrization ρ = exp(β) + ρ` can introduce higher-order nonlinearities
and does not make use of constrained numerical optimization research.
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PDE- and bound-constrained optimization example problem I

Nonlinear elliptic example problem

min
(u,ρ)
J (u, ρ) := 1

2

∫
Ωobs

(u(x)− ud(x))2 dx︸ ︷︷ ︸
data-misfit

+ 1
2

∫
Ω

(γ1ρ(x)2 + γ2∇ρ ·∇ρ)dx︸ ︷︷ ︸
regularization

such that
ρ(x) ≥ ρ`(x), on Ω = [0, 1]2 and{
−∇ · (ρ∇u) + u + u3/3 = g in Ω
ρ∇u · n = 0 on ∂Ω
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PDE- and bound-constrained optimization example problem II

Linear parabolic example problem

min
(u,ρ)
J (u, ρ) := 1

2

∫
Ωobs

(u(T , x)− ud(x))2 dx︸ ︷︷ ︸
data-misfit

+ 1
2

∫
Ω

(γ1ρ(x)2 + γ2∇ρ ·∇ρ)dx︸ ︷︷ ︸
regularization

such that
ρ(x) ≥ ρ`(x), on Ω = [0, 1]2 (periodic) and{
∂u/∂t −∇ · (κ∇u) = g(x) in (0,T )× Ω
u(t, x)|t=0 = ρ(x) in Ω
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Infinite-dimensional interior-point (IP) optimality system

1. Cast the PDE into weak form (assumed here time independent)
Find u ∈ H1(Ω) such that c(u, ρ, λ) = 0, ∀λ ∈ H1(Ω).

2. Define the log-barrier penalized Lagrangian function with PDE-constraint Lagrange
multiplier λ and log-barrier penalty parameter µ > 0

L(u, ρ, λ) := J (u, ρ)︸ ︷︷ ︸
Objective

−µ
∫

Ω
log (ρ− ρ`) dx︸ ︷︷ ︸

log-barrier term

+ c(u, ρ, λ)︸ ︷︷ ︸
PDE constraint

.

3. Solve the interior-point regularized nonlinear optimality system for µ→ 0+

Luũ = 0, ∀ũ ∈ H1 (Ω) , {stationarity}
Lρρ̃ = 0, ∀ρ̃ ∈ H1 (Ω) ∩ L∞(Ω), {stationarity}
Lλλ̃ = 0, ∀λ̃ ∈ H1 (Ω) , {feasibility}
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“Outer” IP-Gauss-Newton method

1. Construct the µ > 0, nonlinear continuation system

Luũ = 0, ∀ũ ∈ H1 (Ω) , {stationarity}
Lρρ̃ = 0, ∀ρ̃ ∈ H1 (Ω) ∩ L∞(Ω), {stationarity}
Lλλ̃ = 0, ∀λ̃ ∈ H1 (Ω) , {feasibility}

2. Use the Gauss-Newton method, with stopping criteria defined by mass-weighted
norms, to inexactly solve log-barrier subproblems (µ↘ 0), with a filter line-search IPM
for robust convergence
More details can be found in:

A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming, Mathematical Programming, 2006.
T. Hartland, C.G. Petra, N. Petra, J. Wang. A scalable interior-point Gauss-Newton method for
PDE-constrained optimization with bound constraints, arXiv, 2024 (in review).
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IP-Gauss-Newton linear solve is a critical computational step

– The IP-Gauss-Newton linear systemHu,u 0 Ju
>

0 R + H log-barrier Jρ>
Ju Jρ 0


︸ ︷︷ ︸

A

û
ρ̂

λ̂

 =

bu
bρ
bλ



that must be solved for the search direction (û, ρ̂, λ̂) at each “outer” optimization
step.

– Ju , discretized linearized forward PDE, R = γ1M + γ2K , regularization

– H log-barrier = M lumpedD, the log-barrier Hessian, a positive definite diagonal
matrix that generally is very ill-conditioned (µ↘ 0).
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IP-Gauss-Newton linear system preconditioner

Goal: efficient iterative solution of the IP-Gauss-Newton linear system Ax = b
Strategy 1: GMRES with the block Gauss-Seidel preconditioner,

Ã :=

Hu,u 0 Ju
>

0 R + H log-barrier Jρ>
Ju 0 0

 .
J. Pestana, T. Rees. Null-space preconditioners for saddle point systems, SIAM Journal on Matrix
Analysis and Applications, 2016
G. Biros, O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained
optimization. Part I: The Krylov-Schur solver, SIAM Journal on Scientific Computing, 2005

Strategy 2: Log-barrier and regularization, R + H log-barrier preconditioned CG for
the equivalent “reduced-space” Schur complement system
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The Gauss-Seidel preconditioned IP-Gauss-Newton matrix

The preconditioned matrix Ã−1A, is similar to

I
[
Hu,u Ju

>

Ju 0

]−1 [
0 Jρ>

]
0 I + (R + H log-barrier)−1Ĥd

 .
Ĥd is the positive semi-definite “reduced-space” data-misfit Gauss-Newton Hessian

Ĥd = (Ju
−1Jρ)>Hu,u(Ju

−1Jρ)

Particular to typical ill-posed PDE-constrained optimization problems:
eigenvalues of R−1Ĥd decay rapidly to zero and in a mesh independent fashion

More details can be found in:
O. Ghattas, K. Wilcox. Learning physics-based models from data: perspectives from inverse problems and
model reduction, Acta Numerica (2021).
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Block Gauss-Seidel preconditioner effectively clusters spectrum

Bounds on the eigenvalues of preconditioned matrix

1 ≤ λj(Ã
−1A) ≤

{
1 + λj(R−1Ĥd ), 1 ≤ j ≤ dim(ρ),
1, dim(ρ) + 1 ≤ j ≤ dim(ρ) + 2 · dim(u),

eigenvalues of R−1Ĥd decay rapidly to zero and in a mesh independent fashion

R−1Ĥd does not contain components specific to IPM
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Block Gauss-Seidel preconditioner effectively clusters spectrum

Bounds on the eigenvalues of preconditioned matrix

1 ≤ λj(Ã
−1A) ≤

{
1 + λj(R−1Ĥd ), 1 ≤ j ≤ dim(ρ),
1, dim(ρ) + 1 ≤ j ≤ dim(ρ) + 2 · dim(u),

eigenvalues of R−1Ĥd decay rapidly to zero and in a mesh independent fashion

R−1Ĥd does not contain components specific to IPM

Ill-conditioning due to IPM is factored out by the preconditioner.
Details in: T. Hartland, C.G. Petra, N. Petra, J. Wang. A scalable interior-point Gauss-Newton method for
PDE-constrained optimization with bound constraints, arXiv, 2024 (in review).
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The cost to apply the block Gauss-Seidel preconditioner

To compute

x = Ã−1b =

Hu,u 0 Ju
>

0 R + H log-barrier Jρ>
Ju 0 0


−1bu

bρ
bλ

 =

xu
xρ
xλ


1. xu = Ju

−1bλ {linearized forward PDE solve}
2. xλ = Ju

−> (bu −Hu,uxu) {adjoint PDE solve}
3. xρ = (R + H log-barrier)−1

(
bρ − Jρ>xλ

)
{AMG-CG solve}

The log-barrier Hessian improves the diagonal dominance of R + H log-barrier

R + H log-barrier = γ1M + γ2K + M lumpedD︸ ︷︷ ︸
log-barrier Hessian
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Sketch of Preconditioned CG approach

Idea: form Schur complement system by eliminating û, λ̂

(R + H log-barrier + Ĥd )ρ̂ = b

Use preconditioner: R + H log-barrier. The eigenvalues

(R + H log-barrier)−1
(
R + H log-barrier + Ĥd

)
= I + (R + H log-barrier)−1 Ĥd

of this preconditioned system are intimately related to the eigenvalues of Ã−1A.
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MFEM-based implementation of the IP-Gauss-Newton framework

Features utilized

Modular object-oriented design;

Distributed memory parallelism (MPI);

Finite element discretization, mesh refinement,
Krylov subspace solvers (MFEM);

Algebraic multigrid preconditioners (hypre);
More details can be found in:

J. Andrej, et al. High performance finite elements with
MFEM, The International Journal of High Performance
Computing Applications, 2024.
hypre. High Performance Preconditioners,
https://llnl.gov/casc/hypre



LLNL-PRES-863065
17/27

Nonlinear elliptic PDE- and bound-constrained example problem

min
(u,ρ)
J (u, ρ) := 1

2

∫
Ωobs

(u(x)− ud(x))2 dx︸ ︷︷ ︸
data-misfit

+ 1
2

∫
Ω

(γ1ρ(x)2 + γ2∇ρ ·∇ρ)dx︸ ︷︷ ︸
regularization

such that
ρ(x) ≥ ρ`(x) = 1.0, on Ω = [0, 1]2 and{
−∇ · (ρ∇u) + u + u3/3 = g in Ω
ρ∇u · n = 0 on ∂Ω

– Ωobs = (0, 1/2)× (0, 1), observation domain
– ud(x) = cos(π x1) cos(π x2) + η(x), noisy (η) data
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Regularization determined by the Morozov discrepancy principle

10−7 10−5 10−3 10−1

10−3

10−2

10−1

γ1, γ2, regularization parameters (γ1 = γ2)

‖u? − ud‖L2(Ωobs)
‖η‖L2(Ωobs)

Left: spatial structure of a random noise sample η (5% relative noise level).
Right: Seminorms of the discrepancy (u? − ud) and noise η as functions of the regularization.
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Nonlinear elliptic PDE- and bound-constrained problem solution

(a) ρ? (b) ρtrue (c) u? (d) ud

Computed optimum ρ? (left), ρtrue (middle left), computed optimum state u? (middle right)
and noisy state data ud (right).



LLNL-PRES-863065
20/27

Solution computed with a mesh independent number of iterations

Average interior-point Average GMRES iterations Average CG iterations
dim(ρ) per optimizer solve per linear solve per linear solve
148 609 28.4 6.50 6.76
591 361 28.2 6.48 6.72
2 362 369 28.8 6.51 6.68
9 443 329 28.3 6.49 6.85
37 761 025 28.7 6.42 6.87
151 019 521 29.0 6.52 6.75

Figure: Outer interior-point optimizer and inner Krylov iteration counts. 10−6 interior-point
optimizer absolute tolerance and 10−8 relative linear solve tolerance.
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Strong scaling (quartz) of the IP-Gauss-Newton-Krylov method

GMRES: solid lines, CG: dashed lines. Timings obtained on Intel Xeon E5-2695 v4 chips.
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Preconditioners are robust with respect to IPM ill-conditioning
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Parabolic PDE- and bound-constrained example problem

Linear parabolic example problem

min
(u,ρ)
J (u, ρ) := 1

2

∫
Ωobs

(u(T , x)− ud(x))2 dx︸ ︷︷ ︸
data-misfit

+ 1
2

∫
Ω

(γ1ρ(x)2 + γ2∇ρ ·∇ρ)dx︸ ︷︷ ︸
regularization

such that
ρ(x) ≥ ρ`(x) = −3/4, on Ω = (0, 1)2 (periodic) and{
∂u/∂t −∇ · (κ∇u) = g(x) in (0,T )× Ω
u(t, x)|t=0 = ρ(x) on Ω

– ρtrue(x) = cos(π x1) cos(π x2),
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Parabolic PDE- and bound-constrained problem solution

(a) ρ? (γ2 = 10−9) (b) ρ? (γ2 = 10−5) (c) ρ? (γ2 = 10−1) (d) ρtrue

Parameter reconstruction ρ? with various regularization parameters (left, middle left and
middle right), and true parameter ρtrue (right).
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Solution computed with a mesh independent number of iterations
for a wide range of regularization parameter values

dim(ρ)
# iter GMRES, (# iter IP)

γ2 = 10−10 γ2 = 10−8 γ2 = 10−6 γ2 = 10−4 γ2 = 10−2

9.2× 103 16.8 (14) 16.7 (14) 15.4 (13) 11.8 (11) 7.1 (7)
3.7× 104 18.7 (15) 17.2 (14) 15.4 (13) 12.1 (11) 7.4 (7)
1.5× 105 19.5 (15) 18.9 (14) 15.5 (13) 11.9 (11) 7.3 (7)
5.9× 105 20.2 (15) 20.5 (15) 15.4 (13) 12.1 (11) 7.1 (7)
2.4× 106 20.7 (14) 20.1 (14) 15.8 (13) 11.9 (11) 7.4 (7)

Table: Algorithmic scaling of the IP-Gauss-Newton method with block Gauss-Seidel
preconditioned GMRES solves for the parabolic time-dependent PDE- and bound-constrained
optimization with backward Euler time step ∆t = 0.01. The absolute tolerance of the outer
optimization loop is 10−6 and the relative tolerance of the block AMG-CG solves is 10−13.
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Conclusions and future work

Algorithmically scalable IP-Gauss-Newton method for PDE- and
bound-constrained optimization problems that respects the nature of the
infinite-dimensional problem.

Ill-conditioning of IP-Gauss-Newton linear systems handled by preconditioners that
exploit PDE-constrained optimization problem structure.

Interested in applying this framework to a broader set of problems and
discussions/feedback from the MFEM community.

The IPM solver (without PDE-constrained examples) is available at
https://github.com/LLNL/ContinuationSolvers.

Details in: T. Hartland, C.G. Petra, N. Petra, J. Wang. A scalable interior-point Gauss-Newton method
for PDE-constrained optimization with bound constraints, arXiv, 2024 (in review).
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