# Serial Tutorial

## Summary

This tutorial illustrates the building and sample use of the following MFEM serial example codes:

An interactive documentation of all example codes is available here.

## Building

Follow the serial instructions to build the MFEM library and to start a GLVis server. The latter is the recommended visualization software for MFEM (though its use is optional).

To build the serial example codes, type make in MFEM's examples directory:

~/mfem/examples> make
g++ -O3 -I.. ex1.cpp -o ex1 -L.. -lmfem
g++ -O3 -I.. ex2.cpp -o ex2 -L.. -lmfem
g++ -O3 -I.. ex3.cpp -o ex3 -L.. -lmfem
g++ -O3 -I.. ex4.cpp -o ex4 -L.. -lmfem
g++ -O3 -I.. ex5.cpp -o ex5 -L.. -lmfem
g++ -O3 -I.. ex6.cpp -o ex6 -L.. -lmfem
g++ -O3 -I.. ex7.cpp -o ex7 -L.. -lmfem
g++ -O3 -I.. ex8.cpp -o ex8 -L.. -lmfem
g++ -O3 -I.. ex9.cpp -o ex9 -L.. -lmfem
g++ -O3 -I.. ex10.cpp -o ex10 -L.. -lmfem


## Example 1

This example code demonstrates the use of MFEM to define a simple linear finite element discretization of the Laplace problem $-\Delta u = 1$ with homogeneous Dirichlet boundary conditions. To run it, simply specify the input mesh file (which will be refined to a final mesh with no more than 50,000 elements):

~/mfem/examples> ex1 -m ../data/star.mesh
Iteration :   0  (B r, r) = 0.00111712
Iteration :   1  (B r, r) = 0.00674088
Iteration :   2  (B r, r) = 0.0123008
...
Iteration :  88  (B r, r) = 5.28955e-15
Iteration :  89  (B r, r) = 1.99155e-15
Iteration :  90  (B r, r) = 9.91309e-16
Average reduction factor = 0.857127


If a GLVis server is running, the computed finite element solution will appear in an interactive window: You can examine the solution using the mouse and the GLVis command keystrokes. Pressing "RAfjlmm", for example, will give us a 2D view without light or perspective showing the computed level lines: This example saves two files called refined.mesh and sol.gf, which represent the refined mesh and the computed solution as a grid function. These can be visualized with glvis -m refined.mesh -g sol.gf as discussed here.

Example 1 can be run on any mesh that is supported by MFEM, including 3D, curvilinear and VTK meshes, e.g.,

~/mfem/examples> ex1 -m ../data/fichera-q2.vtk
Iteration :   0  (B r, r) = 0.0235996
Iteration :   1  (B r, r) = 0.0476694
Iteration :   2  (B r, r) = 0.0200109
...
Iteration :  27  (B r, r) = 7.77888e-14
Iteration :  28  (B r, r) = 2.36255e-14
Iteration :  29  (B r, r) = 8.56679e-15
Average reduction factor = 0.610261 The picture above shows the solution with level lines plotted in normal direction of a cutting plane, and was produced by typing "AaafmIMMooo" followed by cutting plane adjustments with "z", "y" and "w".

## Example 2

This example code solves a simple linear elasticity problem describing a multi-material Cantilever beam. Note that the input mesh should have at least two materials and two boundary attributes as shown below:

               +----------+----------+
boundary --->| material | material |<--- boundary
attribute 1  |    1     |    2     |     attribute 2
(fixed)      +----------+----------+     (pull down)


The example demonstrates the use of (high-order) vector finite element spaces by supporting several different discretization options:

~/mfem/examples> ex2 -m ../data/beam-quad.mesh -o 2
Assembling: r.h.s. ... matrix ... done.
Iteration :   0  (B r, r) = 1.88755e-06
Iteration :   1  (B r, r) = 8.2357e-07
Iteration :   2  (B r, r) = 9.9098e-07
...
Iteration : 498  (B r, r) = 2.78279e-11
Iteration : 499  (B r, r) = 3.75298e-11
Iteration : 500  (B r, r) = 4.95682e-11
PCG: No convergence!
(B r_0, r_0) = 1.88755e-06
(B r_N, r_N) = 4.95682e-11
Number of PCG iterations: 500
Average reduction factor = 0.989508


The output shows the (curved) displaced mesh together with the inverse displacement vector field: The above plot can be alternatively produced with:

glvis -m displaced.mesh -g sol.gf -k "RfjliiiiimmAbb"


Example 2 also works in 3D:

~/mfem/examples> ex2 -m ../data/beam-tet.mesh -o 3
Assembling: r.h.s. ... matrix ... done.
Iteration :   0  (B r, r) = 2.7147e-06
Iteration :   1  (B r, r) = 1.95756e-06
Iteration :   2  (B r, r) = 2.24159e-06
...
Iteration : 426  (B r, r) = 3.37563e-14
Iteration : 427  (B r, r) = 3.06198e-14
Iteration : 428  (B r, r) = 2.5706e-14
Average reduction factor = 0.978648


One can visualize the vector field, e.g., by pressing "dbAfmeoooovvaa" followed by scale and position adjustments with the mouse: ## Example 3

This example code solves a simple 3D electromagnetic diffusion problem corresponding to the second order definite Maxwell equation ${\rm curl\, curl}\, E + E = f$ discretized with the lowest order Nedelec finite elements. It computes the approximation error with a know exact solution, and requires a 3D input mesh:

~/mfem/examples> ex3 -m ../data/fichera.mesh
Iteration :   0  (B r, r) = 121.209
Iteration :   1  (B r, r) = 21.1137
Iteration :   2  (B r, r) = 12.6503
...
Iteration : 149  (B r, r) = 2.40571e-10
Iteration : 150  (B r, r) = 1.39788e-10
Iteration : 151  (B r, r) = 9.43635e-11
Average reduction factor = 0.911811

|| E_h - E ||_{L^2} = 0.00976655


To visualize the magnitude of the solution with the proportionally-sized vector field shown only on the boundary of the domain, type "Vfooogt" in the GLVis window (or run glvis -m refined.mesh -g sol.gf -k "Vfooogt"): Curved meshes are also supported:

~/mfem/examples> ex3 -m ../data/fichera-q3.mesh
Iteration :   0  (B r, r) = 135.613
Iteration :   1  (B r, r) = 22.3785
Iteration :   2  (B r, r) = 12.5215
...
Iteration : 168  (B r, r) = 4.95911e-10
Iteration : 169  (B r, r) = 2.23499e-10
Iteration : 170  (B r, r) = 1.25714e-10
Average reduction factor = 0.921741

|| E_h - E ||_{L^2} = 0.0821686 To visualize the entire vector field, type "fooogtevv" instead, which will use uniform sized arrows colored according to their magnitude. Here is the corresponding plot from "ex3 -m ../data/beam-hex.mesh": Since entire vector fields in 3D might be difficult to see, a good alternative might be to plot the separate components of the field as scalar functions. For example:

~/mfem/examples> ex3 -m ../data/escher.mesh
Iteration :   0  (B r, r) = 348.797
Iteration :   1  (B r, r) = 32.0699
Iteration :   2  (B r, r) = 14.902
...
Iteration : 159  (B r, r) = 4.16076e-10
Iteration : 160  (B r, r) = 3.50907e-10
Iteration : 161  (B r, r) = 3.22923e-10
Average reduction factor = 0.917548

|| E_h - E ||_{L^2} = 0.36541

~/mfem/examples> glvis -m refined.mesh -g sol.gf -gc 0 -k "gooottF" The discontinuity of the Nedelec functions is clearly seen in the above plot.